Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Neural, mechanical, and geometric factors subserving arm posture in humans

FA Mussa-Ivaldi, N Hogan and E Bizzi
Journal of Neuroscience 1 October 1985, 5 (10) 2732-2743; DOI: https://doi.org/10.1523/JNEUROSCI.05-10-02732.1985
FA Mussa-Ivaldi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Hogan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Bizzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

When the hand is displaced from an equilibrium posture by an external disturbance, a force is generated to restore the original position. We developed a new experimental method to measure and represent the field of elastic forces associated with posture of the hand in the horizontal plane. While subjects maintained a given posture, small displacements of the hand along different directions were delivered by torque motors. The hand was held in the displaced positions and, at that time, we measured the corresponding restoring forces before the onset of any voluntary reaction. The stiffness in the vicinity of the hand equilibrium position was estimated by analyzing the force and displacement vectors. We chose to represent the stiffness both numerically, as a matrix, and graphically, as an ellipse characterized by three parameters: magnitude (the area), shape (the ratio of axis) and orientation (direction of the major axis). The latter representation captures the main geometrical features of the elastic force field associated with posture. We also evaluated the conservative and nonconservative components of this elastic force field. We found that the former were much larger than the latter and concluded that the behavior of the neuromuscular system of the multiarticular arm is predominantly spring-like. Our data indicated that the shape and orientation of the stiffness were invariant over subjects and over time. We also investigated the ability of our subjects to produce voluntary and adaptive changes in the stiffness. Our findings indicated that, when a disturbance acting along a fixed and predictable direction was imposed, the magnitude of the stiffness was increased but only minor changes in shape and orientation occurred. Taken together, all of these experiments represent a step toward the understanding of the interactions between geometrical and neural factors involved in maintaining hand posture and its interactions with the environment.

Back to top

In this issue

The Journal of Neuroscience: 5 (10)
Journal of Neuroscience
Vol. 5, Issue 10
1 Oct 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural, mechanical, and geometric factors subserving arm posture in humans
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neural, mechanical, and geometric factors subserving arm posture in humans
FA Mussa-Ivaldi, N Hogan, E Bizzi
Journal of Neuroscience 1 October 1985, 5 (10) 2732-2743; DOI: 10.1523/JNEUROSCI.05-10-02732.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neural, mechanical, and geometric factors subserving arm posture in humans
FA Mussa-Ivaldi, N Hogan, E Bizzi
Journal of Neuroscience 1 October 1985, 5 (10) 2732-2743; DOI: 10.1523/JNEUROSCI.05-10-02732.1985
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.