Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey

H Kennedy and J Bullier
Journal of Neuroscience 1 October 1985, 5 (10) 2815-2830; DOI: https://doi.org/10.1523/JNEUROSCI.05-10-02815.1985
H Kennedy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Bullier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The afferent connectivity of areas V1 and V2 was investigated using the fluorescent dyes fast blue and diamidino yellow. Simultaneous injection of each dye in retinotopically corresponding regions of these areas gave rise to two afferent populations of labeled neurons in subcortical and cortical structures which project to both areas. These two populations showed a variable degree of overlap in their spatial distribution. Neurons labeled by both dyes (double-labeled neurons) which, therefore, project to both areas, were found in substantial numbers in these overlap zones. When the injections were made in non- retinotopically corresponding regions in the two areas, both populations of labeled cells overlapped extensively in the cortex but not in subcortical structures, suggesting that the laws governing the topography of these two types of connections are different. In the cortex, the labeled neurons extended from the fundus of the lunate sulcus to the fundus of the superior temporal sulcus. A few labeled neurons were also found in the inferior temporal cortex and the parahippocampal gyrus. In all cortical regions, corticocortical neurons projecting to V1 and V2 were found in both supra- and infragranular layers, although double-labeled neurons were more numerous in infragranular layers. With increasing distance from V1 there was an increase in the proportion of neurons labeled in infragranular layers. The comparative strength of input to V1 and V2 was computed and was found to be higher to V2 in all cortical regions except the superior temporal sulcus which projected equally heavily to both areas. The superior temporal sulcus also stood out in that of all cortical regions it contained the highest proportion of double-labeled neurons. Single- and double-labeled neurons were found in a number of subcortical structures including the lateral geniculate nucleus, the inferior and lateral pulvinar, the intralaminar nuclei, the nucleus basalis of Meynert, and the amygdala. The pattern of labeling in the lateral pulvinar was in agreement with the suggestion that this structure has a complex topographical organization containing at least a dual representation of the visual field (Bender, D. B. (1981) J. Neurophysiol. 46: 672–693). In the pulvinar complex, densities of labeled neurons permitted evaluation of the strength of input to V1 and V2, the latter being the strongest. These results demonstrate that areas V1 and V2 share a vast amount of common input from the same cortical and subcortical structures and that a number of neurons project to both areas via branching axons.

Back to top

In this issue

The Journal of Neuroscience: 5 (10)
Journal of Neuroscience
Vol. 5, Issue 10
1 Oct 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey
H Kennedy, J Bullier
Journal of Neuroscience 1 October 1985, 5 (10) 2815-2830; DOI: 10.1523/JNEUROSCI.05-10-02815.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey
H Kennedy, J Bullier
Journal of Neuroscience 1 October 1985, 5 (10) 2815-2830; DOI: 10.1523/JNEUROSCI.05-10-02815.1985
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.