Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Light-evoked contraction of the photosensitive iris of the frog

GJ Kargacin and PB Detwiler
Journal of Neuroscience 1 November 1985, 5 (11) 3081-3087; DOI: https://doi.org/10.1523/JNEUROSCI.05-11-03081.1985
GJ Kargacin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PB Detwiler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Smooth muscle cells of the frog iris sphincter contain rhodopsin and contract in response to light. The mechanism of light-evoked contraction was studied with particular attention paid to the role of calcium. The contractile proteins of the sphincter smooth muscle cell can be activated by an increase in intracellular calcium. Light-evoked contraction, however, is not accompanied by a measurable change in membrane potential and occurs in the absence of extracellular Na+ and/or Ca2+, as well as in the presence of isotonic KCI. Maximum light- evoked tension is reduced by exposure to Ca2+-free solutions containing EGTA and high K+ and is restored by incubation in solutions containing Ca2+. The restored response, which persists after return to Ca2+-free solution, depends on the concentration of Ca2+ in the incubating solution and on the duration of the incubation. The results support the conclusion that light produces contraction of the iris sphincter by causing the release of Ca2+ from an intracellular storage site.

Back to top

In this issue

The Journal of Neuroscience: 5 (11)
Journal of Neuroscience
Vol. 5, Issue 11
1 Nov 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Light-evoked contraction of the photosensitive iris of the frog
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Light-evoked contraction of the photosensitive iris of the frog
GJ Kargacin, PB Detwiler
Journal of Neuroscience 1 November 1985, 5 (11) 3081-3087; DOI: 10.1523/JNEUROSCI.05-11-03081.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Light-evoked contraction of the photosensitive iris of the frog
GJ Kargacin, PB Detwiler
Journal of Neuroscience 1 November 1985, 5 (11) 3081-3087; DOI: 10.1523/JNEUROSCI.05-11-03081.1985
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.