Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis

A Imperato and G Di Chiara
Journal of Neuroscience 1 February 1985, 5 (2) 297-306; DOI: https://doi.org/10.1523/JNEUROSCI.05-02-00297.1985
A Imperato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Di Chiara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The method of trans-striatal dialysis has been applied here to the study of the release and metabolism of dopamine (DA) in the awake rat. DA and its acidic metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), present in the dialysates were separated by high performance liquid chromatography on reverse phase columns and estimated by electrochemical detection. In the awake rat, DA, DOPAC, and HVA could be recovered and quantitated in the dialysates for at least 4 days from the time of implantation of the dialysis tube. At a constant 2-microliters/min flow of Ringer in the dialysis tube, the output of the substances recovered in 20-min samples 24 hr after the implantation was as follows: DA, 0.318 +/- 0.035; DOPAC, 41.3 +/- 4.84; HVA, 32.98 +/- 3.79 (mean picomoles +/- SEM of six 40-microliters samples). The output of DA, DOPAC, and HVA decreased slowly so that 4 days after the implantation the output of DA was reduced by about 35% in respect to the 24-hr values. After a 24-hr recovery, drugs were administered and their effect on DA release and metabolism was investigated. Drugs of different chemical structure and spectrum, but having in common the property of blocking DA receptors and being effective neuroleptics such as haloperidol, sulpiride, and flupentixol, stimulated DA release and DOPAC and HVA output. Threshold doses for this effect were very low, being 0.012 mg/k, s.c., for haloperidol, 2.5 mg/kg, s.c., for (-)-sulpiride, and 0.025 mg/kg, s.c., for cis- flupentixol. This effect was stereospecific as the (+) form of sulpiride and the trans- form of flupentixol were at least 10 to 100 times less potent than their enantiomer. The stimulation of DA release was shorter-lasting than the stimulation of DA metabolism and sedation or catalepsy. Moreover, whereas DA release did not increase by more than 100% over basal values, DOPAC and HVA increased by more than 3 times after maximally effective doses of neuroleptics. gamma- Butyrolactone (200 mg/kg, i.p.) reversed haloperidol (0.1 mg/kg, s.c.), and sulpiride (20 mg/kg, s.c.) induced stimulation of DA release while it potentiated the stimulation of DOPAC and HVA output. These data indicate that stimulation of DA release by neuroleptics is strictly dependent upon stimulation of DA firing and that different mechanisms underline their effects on DA release and on DA metabolism.

Back to top

In this issue

The Journal of Neuroscience: 5 (2)
Journal of Neuroscience
Vol. 5, Issue 2
1 Feb 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis
A Imperato, G Di Chiara
Journal of Neuroscience 1 February 1985, 5 (2) 297-306; DOI: 10.1523/JNEUROSCI.05-02-00297.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis
A Imperato, G Di Chiara
Journal of Neuroscience 1 February 1985, 5 (2) 297-306; DOI: 10.1523/JNEUROSCI.05-02-00297.1985
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.