Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats

DL Tauck and JV Nadler
Journal of Neuroscience 1 April 1985, 5 (4) 1016-1022; https://doi.org/10.1523/JNEUROSCI.05-04-01016.1985
DL Tauck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JV Nadler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the rat hippocampal formation, degeneration of CA4-derived afferent fibers provokes the growth of mossy fiber collaterals into the fascia dentata. These aberrant fibers subsequently form granule cell-granule cell synapses. The hippocampal slice preparation was employed to determine whether these recurrent connections are electrophysiologically functional. Hippocampal slices were prepared 12 to 21 days after the bilateral destruction of CA4 neurons with either intracerebroventricular or intravenous kainic acid (KA). In slices from control rats, antidromic stimulation of the mossy fibers elicited a single population spike in the granular layer of the fascia dentata. In contrast, when slices from some KA-treated rats were similarly tested, antidromic stimulation elicited multiple population spikes. This effect was not reproduced by blocking inhibitory transmission with bicuculline methiodide. Slices from other KA-treated rats fired a single population spike, but an antidromic conditioning volley increased the amplitude of a subsequent antidromic population spike by 5 to 15%. In slices from control rats, on the other hand, an antidromic conditioning volley always either decreased or failed to alter the amplitude of an antidromic test response. Superfusion with Ca2+-free medium containing 3.8 mM Mg2+ reversibly abolished all effects of KA administration. Abnormal responses to antidromic stimulation correlated with the loss of CA4 neurons and the growth of supragranular mossy fiber collaterals in the same animals. These results suggest that supragranular mossy fiber collateral sprouts form a functional recurrent excitatory circuit. These aberrant connections may further compromise hippocampal function already disrupted by neuronal degeneration, such as by facilitating seizure activity.

Back to top

In this issue

The Journal of Neuroscience: 5 (4)
Journal of Neuroscience
Vol. 5, Issue 4
1 Apr 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats
DL Tauck, JV Nadler
Journal of Neuroscience 1 April 1985, 5 (4) 1016-1022; DOI: 10.1523/JNEUROSCI.05-04-01016.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats
DL Tauck, JV Nadler
Journal of Neuroscience 1 April 1985, 5 (4) 1016-1022; DOI: 10.1523/JNEUROSCI.05-04-01016.1985
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.