Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement

GL Gerstein, DH Perkel and JE Dayhoff
Journal of Neuroscience 1 April 1985, 5 (4) 881-889; https://doi.org/10.1523/JNEUROSCI.05-04-00881.1985
GL Gerstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DH Perkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JE Dayhoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent advances in techniques for chronic recording from multiple extracellular microelectrodes allow simultaneous observation of firings of substantial populations of neurons. We describe a new conceptual representation of cooperative behavior within the observed neuronal population. This representation leads to a new technique for detecting and studying functional neuronal assemblies that are characterized by temporally related firing patterns. The representation may be applied to both dynamic and long-term aspects of cooperativity. The basic idea is to map activity of neurons into motions of particles in a multidimensional Euclidean space. Each neuron is represented by a point particle located in this space. In the simplest version of the mapping, each nerve impulse results in an increment in a <charge> associated with that particle; between firings the charges decay. The force exerted by any such particle on any other is, by analogy with some physical forces, proportional to the product of their charges and may depend on the Euclidean distance separating them. The force on a particle directly affects its velocity rather than its acceleration, as with actual particles in a viscous medium. These forces result in aggregation of those particles that correspond to neurons tending to fire together; separate clusters represent independent cooperative groups. Modification of the charges and forces permits inclusion of inhibitory interactions. Identification, measurement, and display of the resulting clusters can be performed with any of a number of algorithms. We illustrate the application of this approach to populations of computer-simulated neurons having both direct and indirect excitatory coupling.

Back to top

In this issue

The Journal of Neuroscience: 5 (4)
Journal of Neuroscience
Vol. 5, Issue 4
1 Apr 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement
GL Gerstein, DH Perkel, JE Dayhoff
Journal of Neuroscience 1 April 1985, 5 (4) 881-889; DOI: 10.1523/JNEUROSCI.05-04-00881.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement
GL Gerstein, DH Perkel, JE Dayhoff
Journal of Neuroscience 1 April 1985, 5 (4) 881-889; DOI: 10.1523/JNEUROSCI.05-04-00881.1985
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.