Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults

RM Sapolsky
Journal of Neuroscience 1 May 1985, 5 (5) 1228-1232; DOI: https://doi.org/10.1523/JNEUROSCI.05-05-01228.1985
RM Sapolsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glucocorticoids appear capable of damaging or destroying hippocampal neurons. There is a progressive loss of such neurons with age, and the process can be prevented by adrenalectomy at mid-age or accelerated by prolonged exposure to high circulating titers of glucocorticoids. The present study examines possible mechanisms for this steroid action. Rats were either adrenalectomized, intact, or treated with corticosterone (CORT) sufficient to produce prolonged elevations of titers in the high physiological range. After 1 week, unilateral hippocampal microinfusions were made with either kainic acid (KA) or 3- acetylpyridine (3-AP). Doses of these hippocampal neurotoxins were chosen to produce small-sized lesions. Treatment with CORT exacerbated the extent of damage following neurotoxin infusion, whereas adrenalectomy attenuated the damage. Additional studies eliminated some potential mechanisms for this phenomenon. CORT did not directly alter the intrinsic toxicity of the compounds but, rather, altered the sensitivity of target cells to them. As evidence, no potentiation of damage in CORT-treated animals occurred in KA-sensitive brain regions lacking CORT receptors. Since CORT did not increase the diffusion or binding of [3H]KA in the hippocampus, it appears unlikely that CORT potentiated toxin-induced damage by influencing the specific mechanism of action of any toxin. Finally, the general nature of the CORT potentiation of damage was supported by the markedly different postulated mechanisms of toxicity of KA and 3-AP. We hypothesize that CORT exerts its extensive catabolic effects upon target cells to produce generalized metabolic vulnerability in hippocampal neurons possessing high concentrations of CORT receptors, thereby sensitizing them to varied metabolic insults.

Back to top

In this issue

The Journal of Neuroscience: 5 (5)
Journal of Neuroscience
Vol. 5, Issue 5
1 May 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults
RM Sapolsky
Journal of Neuroscience 1 May 1985, 5 (5) 1228-1232; DOI: 10.1523/JNEUROSCI.05-05-01228.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults
RM Sapolsky
Journal of Neuroscience 1 May 1985, 5 (5) 1228-1232; DOI: 10.1523/JNEUROSCI.05-05-01228.1985
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.