Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration

BG Gold, JW Griffin and DL Price
Journal of Neuroscience 1 July 1985, 5 (7) 1755-1768; DOI: https://doi.org/10.1523/JNEUROSCI.05-07-01755.1985
BG Gold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JW Griffin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DL Price
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Alterations in axonal caliber and neurofilament content have been associated with altered neurofilament transport in several models of neurofibrillary degeneration. Acrylamide intoxication provides a prototype of distal axonal degeneration, the most frequent pattern of axonal pathology in human and experimental neurotoxic injury. Neurofibrillary changes are a variable and often minor aspect of the early pathological changes observed in acrylamide intoxication, and previous studies of slow axonal transport have produced conflicting results. In this study, we have correlated slow axonal transport, specifically neurofilament transport, with structural changes in the sciatic nerve complex of rats exposed to acrylamide. To study direct toxic effects of acrylamide, young rats were given a single dose of acrylamide (75 mg/kg, i.p.). A second group received daily injections of acrylamide at a lower dose (30 mg/kg, i.p.) in order to study animals with established acrylamide neuropathy. The slow component of axonal transport was labeled by intraspinal injections of [35S] methionine. Transport of individual slow component polypeptides was compared to profiles obtained from age-matched controls. Similarly intoxicated rats were perfused for morphometric and morphological studies. Results demonstrate that two different abnormalities of the slow component of axonal transport arise at different stages during the development of experimental acrylamide neuropathy. Both patterns of altered transport have structural correlates which reflect the changes in neurofilament transport. Following a single high dose, there was a modest retardation of the leading edge of the slow component. At this time, neurofilaments accumulated in proximal axons with formation of axonal swellings. During chronic administration, when distal axonal degeneration was present, the proportion of neurofilaments in the slow component was markedly reduced, and there was prominent loss of caliber in proximal axons. We suggest that these early changes represent a direct toxic effect of acrylamide on slow transport, whereas the later changes reflect reordering of slow transport as a neuronal response to toxin-induced axonal injury. This latter effect is of sufficient magnitude to obscure the acrylamide-induced retardation of slow transport.

Back to top

In this issue

The Journal of Neuroscience: 5 (7)
Journal of Neuroscience
Vol. 5, Issue 7
1 Jul 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration
BG Gold, JW Griffin, DL Price
Journal of Neuroscience 1 July 1985, 5 (7) 1755-1768; DOI: 10.1523/JNEUROSCI.05-07-01755.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration
BG Gold, JW Griffin, DL Price
Journal of Neuroscience 1 July 1985, 5 (7) 1755-1768; DOI: 10.1523/JNEUROSCI.05-07-01755.1985
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.