Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Endogenous dopamine can modulate inhibition of substantia nigra pars reticulata neurons elicited by GABA iontophoresis or striatal stimulation

BL Waszczak and JR Walters
Journal of Neuroscience 1 January 1986, 6 (1) 120-126; https://doi.org/10.1523/JNEUROSCI.06-01-00120.1986
BL Waszczak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JR Walters
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous reports from this laboratory have described an ability of iontophoretically applied dopamine to attenuate the inhibitory effects of iontophoresed GABA on neurons of the substantia nigra pars reticulata. This finding raised the question of whether endogenous dopamine, released from dendrites of neighboring pars compacta dopamine neurons, might act as a neuromodulator which diminishes the inhibition of pars reticulata neurons evoked by either GABA iontophoresis or electrical stimulation of the striatonigral GABAergic pathway. Extracellular, single-unit activity of pars reticulata neurons was recorded in male rats anesthetized with chloral hydrate. In one set of studies, d-amphetamine, a drug reported to release dopamine from nigral dendrites, was administered intravenously (1.6 mg/kg) during regular, intermittent iontophoretic pulses of GABA. As had been previously observed with iontophoresed dopamine, i.v. amphetamine significantly lessened the inhibition of reticulata neurons produced by GABA application. This change was reflected by a decrease in GABA's inhibitory potency by 22% relative to the control level of inhibition achieved prior to amphetamine administration. Amphetamine caused no decreases in GABA's effectiveness, however, in animals that had previously received treatments that depleted or destroyed nigral dopamine stores, i.e., in rats pretreated with reserpine and alpha- methyl-p-tyrosine, or in rats with 6-hydroxydopamine lesions of the nigrostriatal dopamine pathway. In a second set of experiments, amphetamine or dopamine was delivered iontophoretically while monitoring the GABA-mediated (bicuculline-reversible) inhibition of reticulata neurons that can be elicited by striatal stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (1)
Journal of Neuroscience
Vol. 6, Issue 1
1 Jan 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Endogenous dopamine can modulate inhibition of substantia nigra pars reticulata neurons elicited by GABA iontophoresis or striatal stimulation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Endogenous dopamine can modulate inhibition of substantia nigra pars reticulata neurons elicited by GABA iontophoresis or striatal stimulation
BL Waszczak, JR Walters
Journal of Neuroscience 1 January 1986, 6 (1) 120-126; DOI: 10.1523/JNEUROSCI.06-01-00120.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Endogenous dopamine can modulate inhibition of substantia nigra pars reticulata neurons elicited by GABA iontophoresis or striatal stimulation
BL Waszczak, JR Walters
Journal of Neuroscience 1 January 1986, 6 (1) 120-126; DOI: 10.1523/JNEUROSCI.06-01-00120.1986
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.