Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways

D Purves, E Rubin, WD Snider and J Lichtman
Journal of Neuroscience 1 January 1986, 6 (1) 158-163; DOI: https://doi.org/10.1523/JNEUROSCI.06-01-00158.1986
D Purves
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Rubin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WD Snider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Lichtman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The enormous range of animal size raises a fundamental problem: How do larger animals maintain adequate control of peripheral structures that are many times more massive and extensive than the homologous structures in smaller animals? To explore this question, we have determined neuronal number, the number of axons that innervate each neuron (convergence) and the number of neurons innervated by each axon (divergence), in a peripheral sympathetic pathway of several mammals (mouse, hamster, rat, guinea pig, and rabbit). The average adult weights of these species vary over approximately a 65-fold range. However, the number of superior cervical ganglion cells increases by only a factor of 4 between the smallest of these animals (mice; about 25 gm) and the largest (rabbits; about 1700 gm); the number of spinal preganglionic neurons that innervate the ganglion increases by only a factor of 2. Thus, the number of nerve cells in the sympathetic system does not increase in proportion to animal size. On the other hand, our results indicate that there are systematic differences across these species in the number of axons that innervate each ganglion cell and in the number of ganglion cells innervated by each axon. We suggest that modulation of convergence and divergence in sympathetic ganglia allows this part of the nervous system to effectively activate homologous peripheral targets over a wide range of animal size.

Back to top

In this issue

The Journal of Neuroscience: 6 (1)
Journal of Neuroscience
Vol. 6, Issue 1
1 Jan 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways
D Purves, E Rubin, WD Snider, J Lichtman
Journal of Neuroscience 1 January 1986, 6 (1) 158-163; DOI: 10.1523/JNEUROSCI.06-01-00158.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways
D Purves, E Rubin, WD Snider, J Lichtman
Journal of Neuroscience 1 January 1986, 6 (1) 158-163; DOI: 10.1523/JNEUROSCI.06-01-00158.1986
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.