Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Noradrenergic hyperinnervation of the motor trigeminal nucleus: alterations in membrane properties and responses to synaptic input

JJ Vornov and J Sutin
Journal of Neuroscience 1 January 1986, 6 (1) 30-37; https://doi.org/10.1523/JNEUROSCI.06-01-00030.1986
JJ Vornov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Sutin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The physiological consequences of the noradrenergic (NE) hyperinnervation of the rat brain stem produced by neonatal administration of 6-hydroxydopamine (6-OHDA) was studied in the motor trigeminal nucleus. Stimulation of the region of the lateral lemniscus, the source of the noradrenergic innervation of the nucleus, facilitated the masseteric reflex for up to 200 msec in both normal and hyperinnervated animals. The peak facilitation was 71% larger in the NE hyperinnervated animals and was reduced by systemically administered alpha- and beta-adrenergic receptor antagonists. Intracellular recordings revealed that the mean resting potential of NE hyperinnervated trigeminal motoneurons was 3 mV more hyperpolarized than that of normal cells. The mean input resistance of NE hyperinnervated motoneurons was reduced from 1.83 +/- 0.15 to 1.22 +/- 0.19 M Omega. NE hyperinnervation increased the amplitude of the monosynaptic EPSP evoked by stimulation of primary afferent cell bodies in the mesencephalic trigeminal nucleus (MesV) by 65%. The mean rise time of the EPSP was increased in NE hyperinnervated motoneurons while the mean half-width was unchanged, suggesting a shift in the distribution of primary afferent terminals away from the motoneuron soma. Stimulation of the lateral lemniscus region produced a predominantly depolarizing PSP with a time course similar to that of the reflex facilitation. The amplitude of the depolarization in NE hyperinnervated motoneurons was not significantly different from that of controls. During this lateral lemniscus region-evoked PSP, stimulation of MesV produced an EPSP of increased amplitude, associated with a decrease or no change in input resistance.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (1)
Journal of Neuroscience
Vol. 6, Issue 1
1 Jan 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Noradrenergic hyperinnervation of the motor trigeminal nucleus: alterations in membrane properties and responses to synaptic input
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Noradrenergic hyperinnervation of the motor trigeminal nucleus: alterations in membrane properties and responses to synaptic input
JJ Vornov, J Sutin
Journal of Neuroscience 1 January 1986, 6 (1) 30-37; DOI: 10.1523/JNEUROSCI.06-01-00030.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Noradrenergic hyperinnervation of the motor trigeminal nucleus: alterations in membrane properties and responses to synaptic input
JJ Vornov, J Sutin
Journal of Neuroscience 1 January 1986, 6 (1) 30-37; DOI: 10.1523/JNEUROSCI.06-01-00030.1986
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.