Abstract
Schwann cells from neonatal rat sciatic nerve can be maintained and grown in culture in the absence of neurons. We are interested in substantially expanding such cultures for use in the study of Schwann cells, their growth responses, and their interactions with neurons. However, it was important to determine if expanded cell populations retained their distinguishing biological properties and their ability to differentiate when recombined with neurons. Therefore, we have compared the functional properties of extensively expanded populations of sciatic nerve Schwann cells to those of embryonic dorsal root ganglion (DRG) Schwann cells that had been briefly expanded in vitro in the continuous presence of ganglion neurons. Sciatic nerve Schwann cells were cultured and purified according to the methods of Brockes et al. (1979). A combination of crude glial growth factor and forskolin was found to act synergistically in providing maximal stimulation of Schwann cell proliferation. Sciatic nerve Schwann cells that were continuously expanded for at least 2 months were compared to Schwann cells derived from fetal dorsal root ganglia. The results indicate that the complement of secreted proteins from both cell populations, either in isolation or recombined with neurons, was essentially identical; both cell populations expressed the cell-surface antigens laminin and Ran 1 (217C antibody); after seeding onto DRG neurons, both cell populations associated with neuronal processes with the same time course; and under identical nutrient conditions, both cell populations were observed to exhibit a comparable capacity for myelination of DRG axons in vitro. Thus, methods used to establish primary cultures of rat sciatic nerve Schwann cells and to expand secondary cultures in vitro in the absence of neurons preserve basic Schwann cell functions.