Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum

R Malach and AM Graybiel
Journal of Neuroscience 1 December 1986, 6 (12) 3436-3458; DOI: https://doi.org/10.1523/JNEUROSCI.06-12-03436.1986
R Malach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AM Graybiel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The striatum is known to have a compartmental organization in which histochemically defined zones called striosomes form branched 3- dimensional labyrinths embedded within the surrounding matrix. We explored how fiber projections from cortical somatic sensory areas representing cutaneous and deep-receptor inputs are organized in relation to this striatal architecture. Areas SI and 3a were mapped electrophysiologically, and distinguishable anterograde tracers (wheat germ agglutinin-HRP and 35S-methionine) were injected into physiologically identified loci. Primary somatic sensory corticostriatal projections were confined to a small, well-defined sector in the dorsolateral corner of the ipsilateral striatum. The somatic sensory afferents were arranged according to a coherent global body map in which rostral body parts were represented more laterally than caudal body parts. Single cortical loci innervated branched and clustered striatal zones that were reminiscent of the striosomes in their range of sizes and shapes yet lay strictly within the extrastriosomal matrix. In contrast to the global orderliness of the striatal body map, there were clear examples of locally complex patterns in which functionally distinct inputs interdigitated with each other. These patterns were often, but not always, produced when corticostriatal afferents carrying different submodality types were labeled. These findings demonstrate the existence of striosome-like striatal compartments within the seemingly uniform extrastriosomal matrix. The principle of mosaic organization thus holds throughout the tissue of the somatic sensory striatum. The striatal architecture delineated here could provide the anatomical substrate for computations requiring cross-modality comparisons within the framework of an overall somatotopy. If a similar multicompartmental architecture also characterizes other striatal regions, as seems likely, it may set general constraints on the nature of associative processing within the striatum as a whole.

Back to top

In this issue

The Journal of Neuroscience: 6 (12)
Journal of Neuroscience
Vol. 6, Issue 12
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum
R Malach, AM Graybiel
Journal of Neuroscience 1 December 1986, 6 (12) 3436-3458; DOI: 10.1523/JNEUROSCI.06-12-03436.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum
R Malach, AM Graybiel
Journal of Neuroscience 1 December 1986, 6 (12) 3436-3458; DOI: 10.1523/JNEUROSCI.06-12-03436.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.