Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network

RG Smith, MA Freed and P Sterling
Journal of Neuroscience 1 December 1986, 6 (12) 3505-3517; DOI: https://doi.org/10.1523/JNEUROSCI.06-12-03505.1986
RG Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MA Freed
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Sterling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The structure of the rod-cone network in the area centralis of cat retina was studied by reconstruction from serial electron micrographs. About 48 rods converge on each cone via gap junctions between the rod spherules and the basal processes of the cone pedicle. One rod diverges to 2.4 cones through these gap junctions, and each cone connects to 8 other cones, also through gap junctions. A static cable model of this network showed that at mesopic intensities, when all rods converging on a cone pedicle are continuously active, the collective rod signal would be efficiently conveyed to the pedicle. At scotopic intensities sufficiently low for only one of the converging rods to receive a single photon within its integration time, the quantal rod signal would be poorly transmitted to the cone pedicle. This is because the tiny signal would be dissipated by the large network into which the individual rod diverges. Under this condition, the rod signal would also be poorly conveyed to the rod spherule. If, however, the rods are electrically disconnected from the network, the quantal signal would be efficiently conveyed to the rod spherule. This analysis suggests that the rod signal is conveyed at mesopic intensities by the cone bipolar pathway and, at scotopic intensities, by the rod bipolar pathway, in accordance with the results of Nelson (1977, 1982; Nelson and Kolb, 1985).

Back to top

In this issue

The Journal of Neuroscience: 6 (12)
Journal of Neuroscience
Vol. 6, Issue 12
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network
RG Smith, MA Freed, P Sterling
Journal of Neuroscience 1 December 1986, 6 (12) 3505-3517; DOI: 10.1523/JNEUROSCI.06-12-03505.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network
RG Smith, MA Freed, P Sterling
Journal of Neuroscience 1 December 1986, 6 (12) 3505-3517; DOI: 10.1523/JNEUROSCI.06-12-03505.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.