Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity

SY Chan, K Murakami and A Routtenberg
Journal of Neuroscience 1 December 1986, 6 (12) 3618-3627; DOI: https://doi.org/10.1523/JNEUROSCI.06-12-03618.1986
SY Chan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Murakami
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Routtenberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To study the role of protein kinase C (PKC) and its substrates in neuronal function, we have investigated the in vitro endogenous phosphorylation of the neuronal phosphoprotein F1 after induction of synaptic plasticity by long-term potentiation (LTP). The protein F1 phosphorylation was found to increase 5 min (Routtenberg et al., 1985), 1 hr (Lovinger et al., 1986) and 3 d (Lovinger et al., 1985) after LTP. The characteristics of this protein bear close similarities to a number of proteins characterized in various neuronal systems, such as B50 (brain specific, synaptosome-enriched protein), pp46 (a growth cone protein), and GAP 43 (nerve growth and regeneration-associated protein). A positive identification of the purified protein F1 with these proteins would link protein F1 to the developmental growth of axons, nerve regeneration, and polyphosphoinositide metabolism, as well as adult plasticity. We have therefore purified and partially characterized native protein F1 so that a meaningful comparison among the properties of these proteins can be made. Using synaptosomal plasma membrane (P2′) as starting material, subsequent purification involved pH extraction, 40–80% ammonium sulfate precipitation, hydroxylapatite, and phenyl-Sepharose column chromatography. This procedure achieved greater than 800-fold purification and about 45% yield relative to P2′. Purified protein F1 (Mr = 47,000, pI = 4.5) was found to be a hydrophilic molecule and was phosphorylated by 1000-fold purified PKC in the presence of phosphatidylserine (PS) and Ca2+. The Ka of PS activation is about 15 micrograms/ml (approximately 20 microM), and that of Ca2+ is about 25 microM. Diolein and DiC:8 (a synthetic diacylglycerol) lowered the requirement of Ca2+ for maximal stimulation from 100 to 5 microM. Ca2+-calmodulin kinases type I and II did not phosphorylate protein F1. The phosphoamino acid analysis showed that 97% of the total incorporated 32P-phosphate was on the serine residue. Phosphopeptide mapping using V8-protease generated 2 phospho-fragments having apparent Mr of 13,000 and 11,000. Calmodulin at 3.6 microM inhibited 95% of protein F1 phosphorylation by PKC. The availability of purified native protein F1 should facilitate investigation of the physiological role of this protein in the nervous system and its functional regulation by PKC.

Back to top

In this issue

The Journal of Neuroscience: 6 (12)
Journal of Neuroscience
Vol. 6, Issue 12
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity
SY Chan, K Murakami, A Routtenberg
Journal of Neuroscience 1 December 1986, 6 (12) 3618-3627; DOI: 10.1523/JNEUROSCI.06-12-03618.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity
SY Chan, K Murakami, A Routtenberg
Journal of Neuroscience 1 December 1986, 6 (12) 3618-3627; DOI: 10.1523/JNEUROSCI.06-12-03618.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.