Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex

CJ Shatz and MB Luskin
Journal of Neuroscience 1 December 1986, 6 (12) 3655-3668; DOI: https://doi.org/10.1523/JNEUROSCI.06-12-03655.1986
CJ Shatz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MB Luskin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To study the prenatal development of connections between the lateral geniculate nucleus (LGN) and the primary visual cortex in the cat, we have examined the relationship between the position of ingrowing afferents from the LGN and their target cells in cortical layers 4 and 6 at various times during the cat's 65 d gestation period and during the first 3 weeks of postnatal life. In 1 series of experiments, the method of transneuronal transport of intraocularly injected tritiated proline (3H-proline), followed by autoradiography, was used to label the developing geniculocortical pathway. In another series, the tritiated thymidine (3H-thymidine) method was employed to keep track of the cells destined for layers 4 and 6 by labeling them on their birthdates (layer 4: embryonic day (E) 37–43; layer 6: E31–36) (Luskin and Shatz, 1985b) and then charting their locations at subsequent times during development. The results of the 2 sets of experiments were compared at corresponding ages. By E39, many of the cells of cortical layer 6 have completed their migrations and are situated within the cortical plate immediately above the subplate. However, the transneuronal labeling pattern indicates that the geniculocotical afferents have not yet arrived within the vicinity of the future visual cortex, but rather are still en route and confined within the optic radiations of the telencephalon. By E42, a week after the first afferents can be detected in the radiations, substantial transneuronal label is found in the subplate immediately below future visual cortex. However, the overlying cortical plate is free of label. Over the next 2 weeks, geniculocortical axons continue to accumulate in the subplate zone, and, in addition, transneuronal label can be found in the marginal zone. By E55 a faint geniculocortical projection can be detected within the cortical plate, but only within its deeper half (future layers 5 and 6), and even then the major portion of the projection is still confined to the subplate. The absence of a projection to cortical layer 4 at these ages is remarkable in view of the results from our 3H-thymidine experiments, which indicate that by E57 the majority of cells destined to belong to layer 4 have already completed their migrations and assumed positions superficial to the cells of layers 5 and 6. By birth, a substantial geniculocortical projection to cortical layer 4 can be detected in the transneuronal autoradiographs.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (12)
Journal of Neuroscience
Vol. 6, Issue 12
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex
CJ Shatz, MB Luskin
Journal of Neuroscience 1 December 1986, 6 (12) 3655-3668; DOI: 10.1523/JNEUROSCI.06-12-03655.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex
CJ Shatz, MB Luskin
Journal of Neuroscience 1 December 1986, 6 (12) 3655-3668; DOI: 10.1523/JNEUROSCI.06-12-03655.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.