Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex

J DeFelipe, M Conley and EG Jones
Journal of Neuroscience 1 December 1986, 6 (12) 3749-3766; DOI: https://doi.org/10.1523/JNEUROSCI.06-12-03749.1986
J DeFelipe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Conley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EG Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Small extracellular injections of HRP were placed into a stratum of corticocortical axons situated immediately deep to area 3b of the monkey somatic sensory cortex. This stratum had previously been demonstrated to contain corticocortical fibers linking the cytoarchitectonic fields of the somatic sensory cortex to one another and certain of them to the motor cortex. This method resulted in extremely successful filling of pyramidal cells, their axons, collateral axon branches, and terminations in areas 3b, 1, and 2 posterior to the injection and in areas 3a and 4 anterior to it. The major finding was that cells with somata situated in any one of these fields and with principal axons traversing the injection site have long collaterals, primarily in layers III and V, which can extend throughout their own cytoarchitectonic field and into one or more other fields. In these fields they give off focused, columnlike concentrations of terminal boutons, which can be separated from one another by 800 micron or more. The anterogradely labeled, primary corticocortical fibers, traced forwards into areas 3a and 4, have virtually identical focal terminations. These findings indicate that interareal connectivity in the sensory-motor cortex can be effected by the axon branches of single cells rather than by separate groups of cells, and this may form a basis for the convergence of place and modality information on single cells in the sensorimotor cortex, a convergence that is not seen in the thalamic input to this cortex.

Back to top

In this issue

The Journal of Neuroscience: 6 (12)
Journal of Neuroscience
Vol. 6, Issue 12
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex
J DeFelipe, M Conley, EG Jones
Journal of Neuroscience 1 December 1986, 6 (12) 3749-3766; DOI: 10.1523/JNEUROSCI.06-12-03749.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex
J DeFelipe, M Conley, EG Jones
Journal of Neuroscience 1 December 1986, 6 (12) 3749-3766; DOI: 10.1523/JNEUROSCI.06-12-03749.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.