Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Sensitization of the crayfish lateral giant escape reaction

FB Krasne and DL Glanzman
Journal of Neuroscience 1 April 1986, 6 (4) 1013-1020; DOI: https://doi.org/10.1523/JNEUROSCI.06-04-01013.1986
FB Krasne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DL Glanzman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Most behavioral reactions that habituate can also be dishabituated by strong stimuli. In the best studied cases, dishabituation seems to be the result of an independent “sensitization” of the behavioral reaction that compensates for habituation without necessarily abolishing it. Crayfish lateral giant (LG) neuron-mediated escape reactions are one of the most fully analyzed behavioral reactions that are prone to habituation; however, sensitization/dishabituation of LG escape has not previously been reported. Here, the effect of strong AC shocks to head or abdomen on the ability of 0.1 msec “test” shocks to sensory roots innervating the tailfan to elicit an LG escape response was examined. Following single AC shocks, test shock threshold for eliciting LG escape reliably fell 5–80% and recovered over 15 min to 1 hr. When AC shocks and test shocks alternated at 90 sec intervals, test shock threshold rapidly dropped to an asymptote that was maintained as long as AC shocks were given (up to 2 hr); following such repeated AC shocks, recovery often required a number of hours but was complete within 24. Comparable sensitization is seen in the response of interneuron A, the largest of a set of sensory interneurons that links afferents to LGs. AC shocks (to either head or tail) no longer sensitize abdominal LG reflex circuitry if the nerve cord is severed between thorax and abdomen. Thus, sensitization appears to depend on a neurally conducted influence that arises in the rostral half of the animal. Pharmacological evidence suggests that octopamine may mediate the sensitization.

Back to top

In this issue

The Journal of Neuroscience: 6 (4)
Journal of Neuroscience
Vol. 6, Issue 4
1 Apr 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensitization of the crayfish lateral giant escape reaction
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Sensitization of the crayfish lateral giant escape reaction
FB Krasne, DL Glanzman
Journal of Neuroscience 1 April 1986, 6 (4) 1013-1020; DOI: 10.1523/JNEUROSCI.06-04-01013.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sensitization of the crayfish lateral giant escape reaction
FB Krasne, DL Glanzman
Journal of Neuroscience 1 April 1986, 6 (4) 1013-1020; DOI: 10.1523/JNEUROSCI.06-04-01013.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.