Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway

MW Dubin, LA Stark and SM Archer
Journal of Neuroscience 1 April 1986, 6 (4) 1021-1036; DOI: https://doi.org/10.1523/JNEUROSCI.06-04-01021.1986
MW Dubin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LA Stark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SM Archer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of action potentials in the development of proper synaptic connections in the mammalian CNS was studied in the kitten retinogeniculate pathway. Our basic finding is that there is improper segregation of retinal inputs onto LGN cells after prolonged retinal action-potential blockade. Retinal ganglion cell firing was silenced from birth by repeated monocular injections of TTX. The resulting ganglion cell connections in the LGN were studied electrophysiologically after the action-potential blockade was ended. Most cells in the deprived LGN layers received excitatory input from both ON-center and OFF-center type ganglion cells, whereas LGN cells normally receive inputs only from ON-center or OFF-center ganglion cells, but not from both types. Improper segregation of ON and OFF inputs has never been reported after other types of visual deprivation that do not block ganglion cell activity. Control experiments showed that receptive fields in the nondeprived LGN layers were normal, that ganglion cell responses remained normal, and that there was no obvious ganglion cell loss. We also showed that individual LGN cells with ON and OFF excitatory inputs were not present in normal neonatal kittens. Two other types of improper input segregation in response to action- potential blockade were also found in the deprived LGN layers. (1) A greater than normal number of LGN cells received both X- and Y-type ganglion cell input. (2) Almost half of the cells at LGN layer borders were excited binocularly. Recovery of LGN normality was rapid and complete after blockade that lasted for only 3 weeks from birth, but little recovery was seen after about 11 weeks of blockade. The susceptibility to action-potential blockade decreased during the first 3 postnatal weeks. These findings may result from axon-terminal sprouting or from the failure of axon terminals to retract. The results are consistent with the idea that normally synchronous activity of neighboring ganglion cells of like center-type may be used in the refinement of retinogeniculate synaptic connections.

Back to top

In this issue

The Journal of Neuroscience: 6 (4)
Journal of Neuroscience
Vol. 6, Issue 4
1 Apr 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway
MW Dubin, LA Stark, SM Archer
Journal of Neuroscience 1 April 1986, 6 (4) 1021-1036; DOI: 10.1523/JNEUROSCI.06-04-01021.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway
MW Dubin, LA Stark, SM Archer
Journal of Neuroscience 1 April 1986, 6 (4) 1021-1036; DOI: 10.1523/JNEUROSCI.06-04-01021.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.