Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis

DY Ts'o, CD Gilbert and TN Wiesel
Journal of Neuroscience 1 April 1986, 6 (4) 1160-1170; DOI: https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986
DY Ts'o
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CD Gilbert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TN Wiesel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Anatomical studies in the visual cortex have shown the presence of long- range horizontal connections with clustered axonal collaterals, suggesting interactions over distances of several millimeters. We used cross-correlation analysis in cat striate cortex to detect interactions between cells over comparable distances. Using one cell as a reference, we recorded from other cells with a second electrode at varying distances and looked for correlated firing between the two recording sites. This technique allowed us to combine a physiological measure of the strength and type of connection between cells with a characterization of their receptive field properties. The observed interactions were excitatory, and extended over horizontal distances of several millimeters. Furthermore, the interactions were between orientation columns of like specificity, resulting in a waxing and waning in the strength of interaction as the electrodes passed through different orientation columns. We studied relationships between strength of correlation and other receptive field properties and found a tendency for facilitatory interactions between cells sharing the same eye preference. A large proportion of our correlations was due to common input. This feature, and the similarity of interactions between cells in the same column with the reference cell, suggest a high degree of interconnectivity between and within the columns. As the distance between the two electrodes increased, the overlap of the receptive fields of the cells participating in the interactions gradually diminished. At the furthest distances recorded, the cell pairs had nonoverlapping receptive fields separated by several degrees. The distribution and range of these interactions corresponded to the clustering and extent of the horizontal connections observed anatomically.

Back to top

In this issue

The Journal of Neuroscience: 6 (4)
Journal of Neuroscience
Vol. 6, Issue 4
1 Apr 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis
DY Ts'o, CD Gilbert, TN Wiesel
Journal of Neuroscience 1 April 1986, 6 (4) 1160-1170; DOI: 10.1523/JNEUROSCI.06-04-01160.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis
DY Ts'o, CD Gilbert, TN Wiesel
Journal of Neuroscience 1 April 1986, 6 (4) 1160-1170; DOI: 10.1523/JNEUROSCI.06-04-01160.1986
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.