Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain

WG Kuhr, JC Bigelow and RM Wightman
Journal of Neuroscience 1 April 1986, 6 (4) 974-982; DOI: https://doi.org/10.1523/JNEUROSCI.06-04-00974.1986
WG Kuhr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Bigelow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RM Wightman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In vivo voltammetry has been used to measure the release of dopamine evoked by electrical stimulation of the medial forebrain bundle (MFB). Simultaneous measurements have been made with voltammetric-sensing electrodes ipsilateral to the stimulating electrode in the nucleus accumbens and the caudate nucleus of the anesthetized rat. During the stimulation, the species observed in both regions is voltammetrically identical to dopamine. Further evidence for the identity of dopamine is provided by anatomical, physiological, pharmacological, and postmortem data. Postmortem analysis of these brain regions after a single stimulation demonstrates that dopamine levels are unchanged, while dihydroxyphenylacetic acid (DOPAC) levels are increased in both regions. Systemic application of synthesis inhibitors results in a decrease in evoked release for each brain region. Amfonelic acid results in a restoration of stimulated release after synthesis inhibition. Evoked release is affected differently by pargyline in the two brain regions. The evoked release of dopamine is significantly elevated in the nucleus accumbens as a result of pargyline administration, but similar effects are not seen in the caudate nucleus. Tissue levels of dopamine are increased in both brain regions by pargyline, but the increase is significantly greater in the accumbens. Electrolytic lesions of the striatonigral pathway or systemic administration of picrotoxin eliminates the pargyline-induced difference in evoked release of dopamine. Amphetamine causes a reduction in stimulated release in the caudate nucleus with little effect on that observed in the nucleus accumbens.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (4)
Journal of Neuroscience
Vol. 6, Issue 4
1 Apr 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain
WG Kuhr, JC Bigelow, RM Wightman
Journal of Neuroscience 1 April 1986, 6 (4) 974-982; DOI: 10.1523/JNEUROSCI.06-04-00974.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain
WG Kuhr, JC Bigelow, RM Wightman
Journal of Neuroscience 1 April 1986, 6 (4) 974-982; DOI: 10.1523/JNEUROSCI.06-04-00974.1986
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.