Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat

DG Standaert, SJ Watson, RA Houghten and CB Saper
Journal of Neuroscience 1 May 1986, 6 (5) 1220-1226; DOI: https://doi.org/10.1523/JNEUROSCI.06-05-01220.1986
DG Standaert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SJ Watson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RA Houghten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CB Saper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The parabrachial nucleus (PB) is the major relay for ascending visceral afferent information from the nucleus of the solitary tract to the forebrain. We have recently found that PB in the rat also receives a substantial afferent projection from neurons in the marginal zone of the entire length of the spinal and trigeminal dorsal horn. Immunoreactive perikarya stained with antisera against several neuropeptides--including dynorphin, enkephalins, and substance P--have been identified in the marginal zone. We therefore investigated the chemical specificity of the spinoparabrachial projection by combining fluorescent retrograde tracing with immunofluorescence for substance P, dynorphin A1-17, met-enkephalin, and two enkephalin precursor fragments (proenkephalin 192–203 and peptide E). Following PB injections of fluorescent dyes, about half of the retrogradely labeled neurons in the marginal zone stained with antisera against either dynorphin or enkephalin series peptides. Elution-restaining experiments indicated that the dynorphin- and enkephalin-immunoreactivities were contained within separate populations of marginal zone neurons. We could not identify any substance P-immunoreactive perikarya in the marginal zone, but substance P-immunoreactive fibers were seen in close apposition to retrogradely labeled, opioid-immunoreactive cell bodies and dendrites. These results indicate that the dynorphin- and enkephalin- immunoreactive perikarya in the marginal zone of the dorsal horn represent independent neuronal populations. These opioid-immunoreactive neurons, which are believed to have extensive local collateral connections, are the main source of a long ascending projection to the parabrachial nucleus in the rat. Furthermore, opioid neurons in the marginal zone may receive substance P-immunoreactive primary sensory afferents.

Back to top

In this issue

The Journal of Neuroscience: 6 (5)
Journal of Neuroscience
Vol. 6, Issue 5
1 May 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat
DG Standaert, SJ Watson, RA Houghten, CB Saper
Journal of Neuroscience 1 May 1986, 6 (5) 1220-1226; DOI: 10.1523/JNEUROSCI.06-05-01220.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat
DG Standaert, SJ Watson, RA Houghten, CB Saper
Journal of Neuroscience 1 May 1986, 6 (5) 1220-1226; DOI: 10.1523/JNEUROSCI.06-05-01220.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.