Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex

D Ferster
Journal of Neuroscience 1 May 1986, 6 (5) 1284-1301; https://doi.org/10.1523/JNEUROSCI.06-05-01284.1986
D Ferster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurons of the visual cortex of the cat were penetrated with intracellular electrodes and postsynaptic potentials evoked by visual stimuli recorded. By alternately polarizing the cell with steady current injected through the recording electrode, IPSPs and EPSPs could be recorded and analyzed independently. Hyperpolarizing current suppressed IPSPs and enhanced EPSPs by moving the membrane potential toward the IPSP equilibrium potential. Depolarizing the cell toward the EPSP equilibrium potential enhanced IPSP. The responses to electrical stimulation of the LGN, where EPSPs and IPSPs could be distinguished easily by virtue of their characteristic latencies and shapes, were used to set the current injection to the appropriate level to view the two types of synaptic potential. EPSPs were found to be well oriented in that maximal depolarizing responses could be evoked at only one stimulus orientation; rotating the stimulus orientation in either direction produced a fall in the EPSP response. IPSPs were also well tuned to orientation, and invariably the preferred orientations of EPSPs and IPSPs in any one cell were identical. In addition, no systematic difference in the width of tuning of the two types of potential was seen. This result has been obtained from penetrations of over 30 cortical cells, including those with simple and complex receptive fields It is concluded that orientation of cortical receptive fields is neither created nor sharpened by inhibition between neurons with different orientation preference. The function of inhibition evoked simultaneously with excitation by optimally oriented stimuli has yet to be determined, though it is likely to be the mechanism underlying other corticalreceptive field properties, such as direction selectivit and end-stopping.

Back to top

In this issue

The Journal of Neuroscience: 6 (5)
Journal of Neuroscience
Vol. 6, Issue 5
1 May 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex
D Ferster
Journal of Neuroscience 1 May 1986, 6 (5) 1284-1301; DOI: 10.1523/JNEUROSCI.06-05-01284.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex
D Ferster
Journal of Neuroscience 1 May 1986, 6 (5) 1284-1301; DOI: 10.1523/JNEUROSCI.06-05-01284.1986
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.