Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Analysis and isolation of embryonic mammalian neurons by fluorescence- activated cell sorting

PA St. John, WM Kell, JS Mazzetta, GD Lange and JL Barker
Journal of Neuroscience 1 May 1986, 6 (5) 1492-1512; DOI: https://doi.org/10.1523/JNEUROSCI.06-05-01492.1986
PA St. John
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WM Kell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JS Mazzetta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GD Lange
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JL Barker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cells were dissociated from the CNS of the embryonic mouse and rat to produce cell suspensions suitable for analysis and separation on a fluorescence-activated cell sorter (FACS). Cells from the spinal cord of the embryonic mouse were analyzed in the most detail. Cell suspensions generated three major peaks in histograms of forward-angle light scatter. Examination of material isolated from each peak and labeling of cell suspensions with the nonvital and supravital fluorescent dyes propidium iodide, ethidium bromide, and acridine orange demonstrated that the three peaks represented live cells, dead cells, and subcellular fragments. Passage through the cell sorter did not detectably damage live cells, as shown by light microscopy, FACS analysis, and in vitro culture of sorted cells. Neurons and glial cells collected by sorting survived at least 4 weeks in culture. Cell suspensions dissociated from the dorsal root ganglia, hippocampus, hypothalamus, cerebellum, and cerebral cortex of the embryonic mouse and from the spinal cord of the embryonic rat produced similar results. Analysis of samples prepared at different developmental stages showed that viable cells could be recovered from each of these regions throughout the important stages of neurogenesis and early cellular differentiation, but that few viable cells could be recovered from animals beyond late embryonic or early postnatal ages. Quantitative FACS analysis of monoclonal antibody A2B5, tetanus toxin and cholera toxin, and lectins binding to live dissociated cells from the embryonic spinal cord demonstrated that these cells had already developed binding sites for these cell-surface ligands by embryonic day 13. These results demonstrate that a fluorescence-activated cell sorter can be used for quantitative analysis of specific cellular properties, that FACS analysis and sorting can be used to identify and isolate live cells from many regions of the embryonic mammalian CNS during important developmental periods, and that sorted neurons and glial cells can be maintained for weeks in culture.

Back to top

In this issue

The Journal of Neuroscience: 6 (5)
Journal of Neuroscience
Vol. 6, Issue 5
1 May 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Analysis and isolation of embryonic mammalian neurons by fluorescence- activated cell sorting
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Analysis and isolation of embryonic mammalian neurons by fluorescence- activated cell sorting
PA St. John, WM Kell, JS Mazzetta, GD Lange, JL Barker
Journal of Neuroscience 1 May 1986, 6 (5) 1492-1512; DOI: 10.1523/JNEUROSCI.06-05-01492.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Analysis and isolation of embryonic mammalian neurons by fluorescence- activated cell sorting
PA St. John, WM Kell, JS Mazzetta, GD Lange, JL Barker
Journal of Neuroscience 1 May 1986, 6 (5) 1492-1512; DOI: 10.1523/JNEUROSCI.06-05-01492.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.