Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons

PI Gardner
Journal of Neuroscience 1 July 1986, 6 (7) 2106-2116; https://doi.org/10.1523/JNEUROSCI.06-07-02106.1986
PI Gardner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Multiple distinct K+-selective channels may contribute to action potential repolarization and afterpotential generation in chick ciliary neurons. The channel types are difficult to distinguish by traditional voltage-clamp methods, primarily because of coactivation during depolarization. I have used the extracellular patch-clamp technique to resolve single-channel K+ currents in cultured chick ciliary ganglion (CG) neurons. Three unit currents selective for K+ ions were observed. The channels varied with respect to unit conductance, sensitivity to Ca2+ ions and voltage, and steady-state gating parameters. The first channel, GK1, was characterized by a unit conductance of 14 pico- Siemens (pS) under physiological recording conditions, gating that was relatively independent of membrane potential and intracellular Ca2+ ions, and single-component open-time distributions with time constants of approximately 9 msec. The second channel, GK2, was characterized by a unit conductance of 64 pS under physiological recording conditions and gating that was affected by membrane potential but was not dependent on the activity of intracellular Ca2+ ions. Open-time distributions indicated 2 open states, with open-time constants of 0.09 (61%) and 0.35 (39%) msec, at +40 mV membrane potential. The third channel, GKCa2+, was identified in isolated patch recordings in which the concentration of internal Ca2+ was 10(-7) M or greater, which was an absolute prerequisite for channel opening. GKCa2+ was characterized by a unit conductance of 193 pS in symmetrical 0.15 M KCl solutions, an open-state probability that was a function not only of [Ca2+]i, but also of membrane potential, and single-component open-time distribution with a time constant of 1.11 msec at -10 mV patch potential. These results suggest the presence of at least 3 distinct K+ channel populations in the membrane of cultured chick CG neurons.

Back to top

In this issue

The Journal of Neuroscience: 6 (7)
Journal of Neuroscience
Vol. 6, Issue 7
1 Jul 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • AbstractBrowser.pdf
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons
PI Gardner
Journal of Neuroscience 1 July 1986, 6 (7) 2106-2116; DOI: 10.1523/JNEUROSCI.06-07-02106.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons
PI Gardner
Journal of Neuroscience 1 July 1986, 6 (7) 2106-2116; DOI: 10.1523/JNEUROSCI.06-07-02106.1986
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.