Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections

F Hefti
Journal of Neuroscience 1 August 1986, 6 (8) 2155-2162; DOI: https://doi.org/10.1523/JNEUROSCI.06-08-02155.1986
F Hefti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Several findings obtained in recent years suggest that NGF, aside from its well-established function as a neurotrophic factor for peripheral sympathetic and sensory neurons, also has trophic influence on the cholinergic neurons of the basal forebrain. The present study assessed whether NGF was able to affect survival of central cholinergic neurons after axonal transections in adult rats. The septo-hippocampal pathway was transected unilaterally by cutting the fimbria, and animals were implanted with a cannula through which NGF or control solutions were injected intraventricularly over 4 weeks. The lesions reduced the number of large cell bodies, as visualized by Nissl staining in the medial septal nucleus and in the vertical limb of the diagonal band of Broca. Furthermore, in the same nuclei, they reduced the number of cell bodies positively stained for AChE after pretreatment with diisopropylfluorophosphate (a method known to result in reliable identification of cholinergic neurons in the septal area). On lesioned sides, the number of cholinergic cells in medial septal nucleus and the vertical limb of the diagonal band was reduced by 50 +/- 4%, as compared to the number on contralateral sides. On lesioned sides of animals chronically treated with NGF, the number of AChE-positive cells in these areas was reduced only by 12 +/- 6%, as compared to control levels. These findings suggest that fimbrial transections resulted in retrograde degeneration of cholinergic septo-hippocampal neurons and that NGF treatment strongly attenuated this lesion-induced degeneration.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (8)
Journal of Neuroscience
Vol. 6, Issue 8
1 Aug 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections
F Hefti
Journal of Neuroscience 1 August 1986, 6 (8) 2155-2162; DOI: 10.1523/JNEUROSCI.06-08-02155.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections
F Hefti
Journal of Neuroscience 1 August 1986, 6 (8) 2155-2162; DOI: 10.1523/JNEUROSCI.06-08-02155.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.