Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes

I Parker, CB Gundersen and R Miledi
Journal of Neuroscience 1 August 1986, 6 (8) 2290-2297; https://doi.org/10.1523/JNEUROSCI.06-08-02290.1986
I Parker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CB Gundersen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Miledi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Functional receptor channels activated by GABA and other neurotransmitters were “transplanted” from rat brain to Xenopus oocytes by injecting the oocytes with total poly(A)+ mRNA isolated from rat or chick brain. Membrane currents elicited in the oocyte by GABA inverted polarity at about the chloride equilibrium potential (ca. -25 mV). Pentobarbital potentiated the GABA-activated currents, without appreciably changing the reversal potential or form of the current- voltage relationship. At low (less than 10(-5) M) concentrations of GABA, pentobarbital (100 microM) potentiated the responses by a factor of 10 or more, but responses to high (ca. 1 mM) concentrations of GABA were almost unchanged. Half-maximal activation of the response was obtained with about 3 X 10(-5) M GABA when applied alone and with about 4 X 10(-6) M GABA when applied together with 100 microM pentobarbital. At low doses of GABA, the size of the current increased as the 1.4th power of GABA concentration, but this relationship became nearly linear in the presence of pentobarbital. The potentiation of the GABA response increased linearly with concentrations of pentobarbital up to about 300 microM, reaching a maximum of about 50-fold. At higher concentrations of pentobarbital, the response to GABA declined. Relaxations of GABA- activated currents following voltage steps became slower in the presence of pentobarbital, suggesting that the open life-time of the channels was prolonged. In addition to actions on GABA-activated currents, pentobarbital itself elicited a small membrane current that inverted polarity at a potential (-10 mV) more positive than the GABA- activated current.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 6 (8)
Journal of Neuroscience
Vol. 6, Issue 8
1 Aug 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes
I Parker, CB Gundersen, R Miledi
Journal of Neuroscience 1 August 1986, 6 (8) 2290-2297; DOI: 10.1523/JNEUROSCI.06-08-02290.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes
I Parker, CB Gundersen, R Miledi
Journal of Neuroscience 1 August 1986, 6 (8) 2290-2297; DOI: 10.1523/JNEUROSCI.06-08-02290.1986
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.