Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Antagonism of the gerbil's sucrose taste response by p-nitrophenyl alpha-D-glucopyranoside and chloramphenicol

V Vlahopoulos and W Jakinovich Jr
Journal of Neuroscience 1 September 1986, 6 (9) 2611-2615; DOI: https://doi.org/10.1523/JNEUROSCI.06-09-02611.1986
V Vlahopoulos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Jakinovich Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have discovered that the gerbil's chorda tympani nerve response to sucrose is suppressed by p-nitrophenyl alpha-D-glucopyranoside (PNP- Glu) and chloramphenicol (CAP). Mixture experiments of PNP-Glu and CAP with sodium chloride, potassium chloride, hydrochloric acid, and sucrose gave rise to the following observations: Neither PNP-Glu nor CAP alone stimulates the gerbil's taste nerve; while the sucrose response is suppressed by these inhibitors, taste responses produced by sodium chloride, potassium chloride, and hydrochloric acid are unaffected by the presence of PNP-Glu or CAP; the antagonisms of PNP- Glu and CAP were surmounted by a high concentration of sucrose; CAP is a more potent antagonist (IC50 = 0.0013 M) than PNP-Glu (IC50 = 0.022 M), and both are more potent than methyl 4,6-dichloro-4,6-dideoxy-alpha- D-galactopyranoside (IC50 = 0.048 M); and sucrose antagonism occurs only when PNP-Glu and CAP are mixed with sucrose. It is short-lived and ceases when the mixtures are rinsed from the gerbil's tongue. Structure- activity studies provided the following information: The alpha anomer of PNP-Glu is a more potent inhibitor than its beta anomer; among the PNP-Glu derivatives tested (p-aminophenyl, p-nitrophenyl, and phenyl) only p-nitrophenyl inhibited; among the nitrophenyl galactosides, the para derivative was more potent than the ortho or meta; and p- nitrophenyl alpha-D-mannopyranoside and p-nitrophenyl alpha-D- galactoside are slightly more potent than PNP-Glu. On the basis of concentration experiments, we believe that the inhibitory mechanisms of PNP-Glu and CAP are different, which suggests the existence of at least 2 sucrose receptor sites.

Back to top

In this issue

The Journal of Neuroscience: 6 (9)
Journal of Neuroscience
Vol. 6, Issue 9
1 Sep 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Antagonism of the gerbil's sucrose taste response by p-nitrophenyl alpha-D-glucopyranoside and chloramphenicol
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Antagonism of the gerbil's sucrose taste response by p-nitrophenyl alpha-D-glucopyranoside and chloramphenicol
V Vlahopoulos, W Jakinovich
Journal of Neuroscience 1 September 1986, 6 (9) 2611-2615; DOI: 10.1523/JNEUROSCI.06-09-02611.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Antagonism of the gerbil's sucrose taste response by p-nitrophenyl alpha-D-glucopyranoside and chloramphenicol
V Vlahopoulos, W Jakinovich
Journal of Neuroscience 1 September 1986, 6 (9) 2611-2615; DOI: 10.1523/JNEUROSCI.06-09-02611.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.