Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro

ME Hatten, RK Liem and CA Mason
Journal of Neuroscience 1 September 1986, 6 (9) 2676-2683; DOI: https://doi.org/10.1523/JNEUROSCI.06-09-02676.1986
ME Hatten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RK Liem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Mason
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To study the regulation of glial-guided neuronal migration, we have analyzed the behavior of cerebellar granule neurons purified from the homozygous weaver (wv/wv) B6CBA-w mouse, an autosomal recessive genetic mutation that suffers a failure of granule cell migration along Bergmann glial processes (Rakic and Sidman, 1973a, b; Rezai and Yoon, 1972), on the processes of astroglia purified from homozygous normal B6CBA-Aw-J-wv (+/+) mouse cerebella. When co-cultured with normal astroglia, weaver granule neurons failed to form neuron-glia contacts characteristic of migrating neurons and impaired normal astroglial morphological differentiation. Normal astroglial cells co-cultured with weaver granule cells had enlarged cell somata with stunted processes and enlarged endfeet compared to normal astroglia co-cultured with normal granule cells. In contrast, normal neurons associated with weaver astroglia, forming tight appositions seen for migrating neurons in vivo, and enhanced weaver astroglial morphological differentiation. Weaver astroglia co-cultured with normal granule cells contained a more normal complement of glial filaments and had a smaller perikaryon with longer, more tapered processes than their counterparts co-cultured with weaver neurons. These results suggest, in agreement with the study of Goldowitz and Mullen (1982) on heterozygous mutant chimeras, that the granule neuron is a primary site of action of the weaver gene, and further support our previous findings that neuron-glia interactions regulate astroglial morphological differentiation (Hatten, 1985).

Back to top

In this issue

The Journal of Neuroscience: 6 (9)
Journal of Neuroscience
Vol. 6, Issue 9
1 Sep 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro
ME Hatten, RK Liem, CA Mason
Journal of Neuroscience 1 September 1986, 6 (9) 2676-2683; DOI: 10.1523/JNEUROSCI.06-09-02676.1986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro
ME Hatten, RK Liem, CA Mason
Journal of Neuroscience 1 September 1986, 6 (9) 2676-2683; DOI: 10.1523/JNEUROSCI.06-09-02676.1986
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.