Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Functional properties of parietal visual neurons: mechanisms of directionality along a single axis

BC Motter, MA Steinmetz, CJ Duffy and VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 154-176; DOI: https://doi.org/10.1523/JNEUROSCI.07-01-00154.1987
BC Motter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MA Steinmetz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Duffy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VB Mountcastle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The directional properties of parietal visual neurons (PVNs) were examined using the method of single-neuron analysis in waking monkeys. PVN properties were determined with passive visual stimuli as the animal executed a simple detection task. Parietal area PG was studied in 10 hemispheres of 6 male Macaca mulatta. Each class of parietal neurons was identified in PG: the fixation, projection, visual, and oculomotor neurons; 613 PVNs were identified, 323 were studied quantitatively, and 188 were studied with one or more of the protocols described. The receptive fields of PVNs are commonly large and bilateral, and at the limit some may fill the visual field; for many, the central zone of the visual field is spared when the fields are determined by stimuli that enter from the periphery and transit meridians. The receptive fields vary with the behavioral state, the angle of gaze, and the parameters of the stimuli used to determine them. PVNs are sensitive to stimulus movement but relatively insensitive to stimulus speed; many respond over a speed range of 5 degrees-500 degrees/sec. Stimulus-response relations may be incremental or decremental with increasing speed or show maxima or minima in the midrange of speed, but the response variation over the full range is rarely greater than 2:1. The directional preferences of PVNs with bilateral receptive fields are opponently organized; the preferred directions point either inward toward or outward away from the central line of gaze along the 4 meridians tested, which were equally spaced in the circular dimension of the visual field. The mechanism of the axis directionality of PVNs was studied using conditioning-test paradigms. They revealed a feed-forward inhibition preceding a stimulus, an effect that extends from the leading edge of the stimulus for 10 degrees-20 degrees in front of the moving stimulus and lasts for several hundred milliseconds. A double-Gaussian model of superimposed but unequal excitatory and inhibitory effects suffices to explain the present observations. It places demand upon the projection of functional properties from the contralateral hemisphere or from the ipsilateral prestriate areas that project upon PG over multistaged pathways and minimal demands upon intracortical processing mechanisms.

Back to top

In this issue

The Journal of Neuroscience: 7 (1)
Journal of Neuroscience
Vol. 7, Issue 1
1 Jan 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional properties of parietal visual neurons: mechanisms of directionality along a single axis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Functional properties of parietal visual neurons: mechanisms of directionality along a single axis
BC Motter, MA Steinmetz, CJ Duffy, VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 154-176; DOI: 10.1523/JNEUROSCI.07-01-00154.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional properties of parietal visual neurons: mechanisms of directionality along a single axis
BC Motter, MA Steinmetz, CJ Duffy, VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 154-176; DOI: 10.1523/JNEUROSCI.07-01-00154.1987
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.