Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Functional properties of parietal visual neurons: radial organization of directionalities within the visual field

MA Steinmetz, BC Motter, CJ Duffy and VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 177-191; https://doi.org/10.1523/JNEUROSCI.07-01-00177.1987
MA Steinmetz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BC Motter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Duffy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VB Mountcastle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Parietal visual neurons (PVNs) were studied in waking monkeys as they executed a simple fixation-detection task. Test visual stimuli of varied direction, speed, and extent were presented during the fixation period; these stimuli did not control behavior. Most PVNs subtend large, bilateral receptive fields and are exquisitely sensitive to stimulus motion and direction but insensitive to stimulus speed. The directional preferences of PVNs along meridians are opponently organized, with the preferred directions pointing either inward toward or outward away from the fixation point. Evidence presented in the preceding paper (Motter et al., 1987) indicates that opponent directionality along a single meridian is produced by a feed-forward inhibition of 20 degrees-30 degrees spatial extent. The observations fit a double-Gaussian model of superimposed but unequal excitatory and inhibitory receptive fields: When the former is larger, inward directionality results; when smaller, outward directionality results. We examine here the distribution of the meridional directional preferences in the visual field. Tests showed that opponent organization is not produced by differences in local directional properties in different parts of the receptive field. The distribution of response intensities from one meridian to another is adequately described by a sine wave function. These data indicate a best radial direction for each neuron with a broad distribution of response intensities over successive meridians. Thus, any single PVN, with rare exceptions, cannot signal radial stimulus direction precisely. We then determined how accurately the population response predicted radial stimulus direction by the application of a linear vector summation model. The resulting population vector varied from stimulus direction by an average of 9 degrees. Whether or not the perception of the direction of motion depends upon a population vector remains uncertain. PVNs are especially sensitive to object movement in the visual surround, particularly in the periphery of the visual field. This, combined with their large receptive fields and their wide but flat sensitivity to stimulus speed, makes them especially sensitive to optic flow. This is discussed in relation to the role of the parietal visual system in the visual guidance of projected movements of the arm and hand, in the guidance of locomotion, and in evoking the illusion of vection.

Back to top

In this issue

The Journal of Neuroscience: 7 (1)
Journal of Neuroscience
Vol. 7, Issue 1
1 Jan 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional properties of parietal visual neurons: radial organization of directionalities within the visual field
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Functional properties of parietal visual neurons: radial organization of directionalities within the visual field
MA Steinmetz, BC Motter, CJ Duffy, VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 177-191; DOI: 10.1523/JNEUROSCI.07-01-00177.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional properties of parietal visual neurons: radial organization of directionalities within the visual field
MA Steinmetz, BC Motter, CJ Duffy, VB Mountcastle
Journal of Neuroscience 1 January 1987, 7 (1) 177-191; DOI: 10.1523/JNEUROSCI.07-01-00177.1987
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.