Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray

MM Heinricher, ZF Cheng and HL Fields
Journal of Neuroscience 1 January 1987, 7 (1) 271-278; DOI: https://doi.org/10.1523/JNEUROSCI.07-01-00271.1987
MM Heinricher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ZF Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HL Fields
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The midbrain periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM) are important links in a neuronal network that modulates nociceptive transmission. In the RVM, 2 classes of cells have been identified that show changes in activity at the time of the tail-flick response (TF) elicited by noxious heat (Fields et al., 1983a). We now report that neurons in the PAG region also show changes in activity related to TF. Extracellular recordings were made from the PAG and the ventrally adjacent tegmentum at sites from which it was possible to inhibit TF using stimulating currents of 10 microA or less. Cell activity, time of TF occurrence, and tail temperature were recorded during 5 repetitions of the heat stimulus. Periresponse and peristimulus histograms were plotted with reference to the TF and tail temperature, respectively. A significant number of neurons in the PAG region showed changes in activity that preceded the TF. “Midbrain On- cells” (13.6% of the sample) displayed an abrupt increase in firing just prior to the TF. “Midbrain Off-cells” (4.4%) paused just prior to the TF. The remaining neurons (241 of 294, or 82%) did not exhibit changes in firing prior to the TF. Thus, cells with changes in activity related to the TF are present in the PAG region as well as in the RVM. The PAG has a large projection to the RVM, and microinjection of morphine in the PAG increases activity of RVM Off-cells and decreases that of RVM On-cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 7 (1)
Journal of Neuroscience
Vol. 7, Issue 1
1 Jan 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray
MM Heinricher, ZF Cheng, HL Fields
Journal of Neuroscience 1 January 1987, 7 (1) 271-278; DOI: 10.1523/JNEUROSCI.07-01-00271.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray
MM Heinricher, ZF Cheng, HL Fields
Journal of Neuroscience 1 January 1987, 7 (1) 271-278; DOI: 10.1523/JNEUROSCI.07-01-00271.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.