Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Inhibitory interactions between spiking and nonspiking local interneurons in the locust

M Burrows
Journal of Neuroscience 1 October 1987, 7 (10) 3282-3292; https://doi.org/10.1523/JNEUROSCI.07-10-03282.1987
M Burrows
Department of Zoology, University of Cambridge, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Simultaneous intracellular recordings were made from pairs of spiking and nonspiking local interneurons in the metathoracic ganglion of the locust to search for interactions that might underlie tactile and proprioceptive reflexes of a leg. A spike in a spiking local interneuron is followed after a consistent latency (0.6 +/- 0.12 msec, mean +/- SD) by an IPSP in a particular nonspiking interneuron. The connection appears to be direct and chemically mediated. By contrast, manipulating the membrane potential of a nonspiking interneuron by injecting current through the recording electrode has no direct effect on a spiking local interneuron. The direct interactions between pairs of these local interneurons are thus one-way. If, however, the current injected into a nonspiking interneuron is sufficient to evoke a movement by exciting motor neurons, then the spiking interneuron can be excited or inhibited by the resulting reafference. The spiking local interneurons have excitatory regions in their receptive fields formed by arrays of exteroreceptors or by proprioceptors at specific joints. The inhibitory connections mean that the postsynaptic nonspiking interneurons have corresponding inhibitory regions to their receptive fields. Several spiking local interneurons with similar receptive fields may converge onto one nonspiking interneuron. Some nonspiking interneurons, however, have larger receptive fields than an individual spiking interneuron, again indicating convergence of inputs. The specificity of the inhibitory connections preserves the spatial representation of sensory information for use in particular reflexes. For example, touching hairs on the ventral femur evokes a reflex extension of the tibia. Spiking interneurons excited by these receptors inhibit a nonspiking interneuron that would cause the opposing and therefore unwanted flexion movement. Viewed in this behavioral context, the pattern of connections between the local interneurons forms the basis of the circuitry for the local reflex adjustments of posture and locomotion.

Back to top

In this issue

The Journal of Neuroscience: 7 (10)
Journal of Neuroscience
Vol. 7, Issue 10
1 Oct 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibitory interactions between spiking and nonspiking local interneurons in the locust
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Inhibitory interactions between spiking and nonspiking local interneurons in the locust
M Burrows
Journal of Neuroscience 1 October 1987, 7 (10) 3282-3292; DOI: 10.1523/JNEUROSCI.07-10-03282.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Inhibitory interactions between spiking and nonspiking local interneurons in the locust
M Burrows
Journal of Neuroscience 1 October 1987, 7 (10) 3282-3292; DOI: 10.1523/JNEUROSCI.07-10-03282.1987
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.