Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Muscarinic and nicotinic synaptic activation of the developing chicken iris

G Pilar, R Nunez, IS McLennan and SD Meriney
Journal of Neuroscience 1 December 1987, 7 (12) 3813-3826; DOI: https://doi.org/10.1523/JNEUROSCI.07-12-03813.1987
G Pilar
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06268.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Nunez
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06268.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
IS McLennan
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06268.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SD Meriney
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06268.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The development of the mechanical characteristics of contraction and the pharmacology of synaptic activation in chick iris and ciliary body were examined from embryonic day 9 through posthatching. The ciliary ganglion-target muscle system has proven to be a useful model for both in vivo and in vitro studies of neuron-target interactions; one such interaction is involved in neuronal cell death, which in the ciliary ganglion occurs from Stage (St) 34 to 40. To understand the mechanism by which cholinergic blocking agents prevent naturally occurring neuronal death in the chick ciliary ganglion (see the following paper, Meriney et al., 1987), it was necessary to determine the effect of these agents on synaptic transmission at target structures during the cell death period. Initially (St 34–36), iris muscle contraction are synaptically mediated via muscarinic ACh receptors (AChRs) on myoepithelial cells, which have the contractile and structural characteristics of smooth muscle. Close apposition of synaptic terminals, similar to that described for mature synapses, was observed on these myoepithelial cells. Subsequently (St 37), the striated muscle fibers that appear are activated by nicotinic receptors, although muscarinic AChRs are also present. Mechanically, this can be seen as gradually changing from a slow-onset contraction, elicited only by 30 Hz stimulation, to a fast-twitch response (St 37–44). Dilator fibers that develop later in the iris (at about St 39) also possess nicotinic and muscarinic receptors. The ciliary body musculature, although not extensively studied, also appears to have dual cholinergic activation during development. The mature iris has predominately striated muscle fibers that have both junctional nicotinic and muscarinic (mostly extrajunctional) AChRs. The dual presence of both receptor types in the same muscle fiber was confirmed with intracellular recordings, in which only the initial portion of the ACh-elicited depolarization was sensitive to alpha bungarotoxin (alpha BTX). In addition, specific muscarinic binding sites were described in the developing, as well as in the mature, iris. The developing chick iris was also shown to contract directly in response to light, this response disappearing after hatching. This unique dual-receptor pharmacology (nicotinic- muscarinic) and light response of a striated muscle may be due to the neural crest origin of these cells.

Back to top

In this issue

The Journal of Neuroscience: 7 (12)
Journal of Neuroscience
Vol. 7, Issue 12
1 Dec 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Muscarinic and nicotinic synaptic activation of the developing chicken iris
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Muscarinic and nicotinic synaptic activation of the developing chicken iris
G Pilar, R Nunez, IS McLennan, SD Meriney
Journal of Neuroscience 1 December 1987, 7 (12) 3813-3826; DOI: 10.1523/JNEUROSCI.07-12-03813.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Muscarinic and nicotinic synaptic activation of the developing chicken iris
G Pilar, R Nunez, IS McLennan, SD Meriney
Journal of Neuroscience 1 December 1987, 7 (12) 3813-3826; DOI: 10.1523/JNEUROSCI.07-12-03813.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.