Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Calcium regulation of neurite elongation and growth cone motility

MP Mattson and SB Kater
Journal of Neuroscience 1 December 1987, 7 (12) 4034-4043; DOI: https://doi.org/10.1523/JNEUROSCI.07-12-04034.1987
MP Mattson
Department of Anatomy, Colorado State University, Fort Collins 80523.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SB Kater
Department of Anatomy, Colorado State University, Fort Collins 80523.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurite outgrowth from isolated, identified molluscan (Helisoma trivolvis) neurons in culture can be suppressed by neurotransmitters and electrical activity, both of which increase intraneuronal Ca2+ levels (Haydon et al., 1984; Cohan et al., 1986, 1987). We explored the possibility of a causal relationship between Ca2+ influx from the cell exterior and neurite outgrowth using a spectrum of pharmacological manipulations known to affect transmembrane Ca2+ flux. Ca2+ ionophore A23187, an agent expected to increase Ca2+ influx, suppressed both elongation and motile growth cone structures (i.e., filopodia and lamellipodia) in a dose-dependent (10(8)-10(6) M) and reversible manner. Furthermore, high concentrations of Ca2+ channel blockers (La3+, Cd2+, Co2+; e.g., 10(-4) M La3+) suppressed both elongation and growth cone movements. These data support previous experiments, which indicated that neurite outgrowth is dependent upon a specific range of intracellular Ca2+ concentrations (Connor, 1986; Cohan et al., 1987). However, tests of the dose-dependency of the effects of Ca2+ channel blockers on outgrowth revealed that specific, low concentrations of Ca2+ channel blockers (e.g., 10(-5) M La3+) caused, simultaneously, a reduction of growth cone filopodia and an acceleration of elongation. Consistent with the results using low levels of Ca2+ channel blockers, reduced extracellular Ca2+-stimulated neurite elongation while suppressing growth cone motility. Finally, neurotransmitter regulation of neurite outgrowth was shown to require influx of extracellular Ca2+; serotonin inhibition of neuron B19 was prevented by La3+ (10(-5) M) or by incubation in a reduced Ca2+ environment. Taken together, these results indicate that there are optimum levels of Ca2+ influx that promote normal neurite elongation and growth cone movements; these 2 components of outgrowth appear to have differential sensitivities to Ca2+.

Back to top

In this issue

The Journal of Neuroscience: 7 (12)
Journal of Neuroscience
Vol. 7, Issue 12
1 Dec 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Calcium regulation of neurite elongation and growth cone motility
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Calcium regulation of neurite elongation and growth cone motility
MP Mattson, SB Kater
Journal of Neuroscience 1 December 1987, 7 (12) 4034-4043; DOI: 10.1523/JNEUROSCI.07-12-04034.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Calcium regulation of neurite elongation and growth cone motility
MP Mattson, SB Kater
Journal of Neuroscience 1 December 1987, 7 (12) 4034-4043; DOI: 10.1523/JNEUROSCI.07-12-04034.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.