Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection

JC Pearson, LH Finkel and GM Edelman
Journal of Neuroscience 1 December 1987, 7 (12) 4209-4223; DOI: https://doi.org/10.1523/JNEUROSCI.07-12-04209.1987
JC Pearson
Neurosciences Institute, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LH Finkel
Neurosciences Institute, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GM Edelman
Neurosciences Institute, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent experimental evidence from the somatosensory, auditory, and visual systems documents the existence of functional plasticity in topographic map organization in adult animals. This evidence suggests that an ongoing competitive organizing process controls the locations of map borders and the receptive field properties of neurons. A computer model based on the process of neuronal group selection has been constructed that accounts for reported results on map plasticity in somatosensory cortex. The simulations construct a network of locally connected excitatory and inhibitory cells that receives topographic projections from 2 receptor sheets corresponding to the glabrous and dorsal surfaces of the hand (a typical simulation involves approximately 1500 cells, 70,000 intrinsic and 100,000 extrinsic connections). Both intrinsic and extrinsic connections undergo activity- dependent modifications according to a synaptic rule based on heterosynaptic interactions. Repeated stimulation of the receptor sheet resulted in the formation of neuronal groups-local sets of strongly interconnected neurons in the network. Cells in most groups were found to have similar receptive fields: they were exclusively glabrous or dorsal despite equal numbers of anatomical connections from both surfaces. The sharpness of map borders was due to the sharpness of the underlying group structure; shifts in the locations of these borders resulted from competition between groups. Following perturbations of the input, the network underwent changes similar to those observed experimentally in monkey somatosensory cortex. Repeated local tapping on the receptor sheet resulted in a large increase in the magnification factor of the stimulated region. Transection of the connections from a glabrous region resulted in the organization of a new representation of corresponding dorsal region. The detailed simulations provide several insights into the mechanisms of such changes, as well as a series of predictions about cortical behavior for further experimental test.

Back to top

In this issue

The Journal of Neuroscience: 7 (12)
Journal of Neuroscience
Vol. 7, Issue 12
1 Dec 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection
JC Pearson, LH Finkel, GM Edelman
Journal of Neuroscience 1 December 1987, 7 (12) 4209-4223; DOI: 10.1523/JNEUROSCI.07-12-04209.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection
JC Pearson, LH Finkel, GM Edelman
Journal of Neuroscience 1 December 1987, 7 (12) 4209-4223; DOI: 10.1523/JNEUROSCI.07-12-04209.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.