Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Functional subdivisions of the temporal lobe neocortex

GC Baylis, ET Rolls and CM Leonard
Journal of Neuroscience 1 February 1987, 7 (2) 330-342; https://doi.org/10.1523/JNEUROSCI.07-02-00330.1987
GC Baylis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ET Rolls
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CM Leonard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In order to gather evidence on functional subdivisions of the temporal lobe neocortex of the primate, the activity of more than 2600 single neurons was recorded in 10 myelo- and cytoarchitecturally defined subdivisions of the cortex in the superior temporal sulcus (STS) and inferior temporal gyrus of the anterior part of the temporal lobe of 5 hemispheres of 3 macaque monkeys. First, convergence of different modalities into each area was investigated. Areas TS and TAa, in the upper part of this region, were found to receive visual as well as auditory inputs. Areas TPO, PGa, and IPa, in the depths of the STS, received visual, auditory, and somatosensory inputs. Areas TEa, TEm, TE3, TE2, and TE1, which extend from the ventral bank of the STS through the inferior temporal gyrus, were primarily unimodal visual areas. Second, of the cells with visual responses, it was found that some neurons in areas TS-IPa could be activated only by moving visual stimuli, whereas the great majority of neurons in areas TEa-TE1 could be activated by stationary visual stimuli. Third, it was found that there were few sharply discriminating visual neurons in areas TS and TAa; of the sharply discriminating visual neurons in other areas, however, neurons that responded primarily to faces were found predominantly in areas TPO, TEa, and TEm (in which they represented 20% of the neurons with visual responses); neurons that were tuned to relatively simple visual stimuli such as sine-wave gratings, color, or simple shapes were relatively common in areas TEa, TEm, and TE3; and neurons that responded only to complex visual stimuli were common in areas IPa, TEa, TEm, and TE3. These findings show inter alia that areas TPO, PGa, and IPa are multimodal, that the inferior temporal gyrus areas are primarily unimodal, that there are areas in the cortex in the anterior and dorsal part of the STS that are specialized for the analysis of moving visual stimuli, that neurons responsive primarily to faces are found predominantly in areas TPO, TEa, and TEm, and that architectural subdivisions of the temporal lobe cortex are related to neuronal response properties.

Back to top

In this issue

The Journal of Neuroscience: 7 (2)
Journal of Neuroscience
Vol. 7, Issue 2
1 Feb 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional subdivisions of the temporal lobe neocortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Functional subdivisions of the temporal lobe neocortex
GC Baylis, ET Rolls, CM Leonard
Journal of Neuroscience 1 February 1987, 7 (2) 330-342; DOI: 10.1523/JNEUROSCI.07-02-00330.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional subdivisions of the temporal lobe neocortex
GC Baylis, ET Rolls, CM Leonard
Journal of Neuroscience 1 February 1987, 7 (2) 330-342; DOI: 10.1523/JNEUROSCI.07-02-00330.1987
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.