Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Mechanisms controlling accurate changes in elbow torque in humans

PJ Cordo
Journal of Neuroscience 1 February 1987, 7 (2) 432-442; DOI: https://doi.org/10.1523/JNEUROSCI.07-02-00432.1987
PJ Cordo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This paper addresses a fundamental question of how motor commands specify target torque levels. Human subjects produced fast and accurate changes in torque with the isometric elbow joint. Visual stimuli were used to indicate target torque levels as well as to cue subjects to initiate their responses. During rapid changes in torque from one steady-state level to another, target torque was achieved through a sequence of approximations. During the first 200–250 msec of responses produced in the presence of visual feedback, 3 distinct control mechanisms were recruited to guide torque to the target level. The timing and accuracy of each control mechanism were evaluated. The first control mechanism was triggered by the visual stimulus and produced the initial rise in torque. Target torque predictability was found to strongly influence the accuracy of this control mechanism. The second control mechanism produced a corrective adjustment in torque within roughly the first 100 msec of responses. This mechanism incorporated target torque information provided by the stimulus into the response. The third control mechanism began 200–250 msec after response onset and produced corrective adjustments based on visual feedback of torque errors. The stability of the visual feedback mechanism was evaluated because of a long loop delay. Two strategies were used to control stability: low gain and information transfer between the visual feedback mechanism and the preceding (second) control mechanism.

Back to top

In this issue

The Journal of Neuroscience: 7 (2)
Journal of Neuroscience
Vol. 7, Issue 2
1 Feb 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms controlling accurate changes in elbow torque in humans
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Mechanisms controlling accurate changes in elbow torque in humans
PJ Cordo
Journal of Neuroscience 1 February 1987, 7 (2) 432-442; DOI: 10.1523/JNEUROSCI.07-02-00432.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mechanisms controlling accurate changes in elbow torque in humans
PJ Cordo
Journal of Neuroscience 1 February 1987, 7 (2) 432-442; DOI: 10.1523/JNEUROSCI.07-02-00432.1987
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.