Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Forskolin's effect on transient K current in nudibranch neurons is not reproduced by cAMP

J Coombs and S Thompson
Journal of Neuroscience 1 February 1987, 7 (2) 443-452; DOI: https://doi.org/10.1523/JNEUROSCI.07-02-00443.1987
J Coombs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Thompson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Forskolin, a diterpene extracted from Coleus forskolii, stimulates the production of cAMP in a variety of cells and is potentially an important tool for studying the role of cAMP in the modulation of neuronal excitability. We studied the effects of forskolin on neurons of nudibranch molluscs and found that it caused characteristic, reversible changes in the amplitude and waveform of the transient K current, IA, and also activated an inward current similar to the cAMP- dependent inward current previously described in molluscan neurons. Forskolin altered the time course of IA activation and inactivation but did not affect the voltage dependence or the reversal potential of the current. IA normally inactivates exponentially, but in forskolin the time course of inactivation can be fit by the sum of 2 exponentials with an initial rate that is faster than the control and a final rate that is much slower. On depolarization in forskolin, IA begins to activate at the normal rate, but a slower component of activation is also seen. The changes in IA in the nudibranch cells were qualitatively different than the changes caused by forskolin in Aplysia bag cell neurons (Strong, 1984). Experiments were performed to determine whether these effects of forskolin require cAMP. Intracellular injection of cAMP, application of membrane-permeable analogs of cAMP, application of phosphodiesterase inhibitors, and intracellular injection of the active catalytic subunit of cAMP-dependent protein kinase did not affect the amplitude or waveform of IA. Also, the changes in IA that are caused by forskolin were not prevented or reversed by intracellular injection of an inhibitor of cAMP-dependent protein kinase. Cyclic AMP did, however, activate inward current at voltages near the resting potential. We conclude that the changes in IA and the activation of inward current represent separate affects of forskolin. The inward current appears to depend on an increase in intracellular cAMP, while the changes in IA do not. These experiments show that, in addition to activating adenylate cyclase, forskolin may have a separate direct affect on the transient K current.

Back to top

In this issue

The Journal of Neuroscience: 7 (2)
Journal of Neuroscience
Vol. 7, Issue 2
1 Feb 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Forskolin's effect on transient K current in nudibranch neurons is not reproduced by cAMP
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Forskolin's effect on transient K current in nudibranch neurons is not reproduced by cAMP
J Coombs, S Thompson
Journal of Neuroscience 1 February 1987, 7 (2) 443-452; DOI: 10.1523/JNEUROSCI.07-02-00443.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Forskolin's effect on transient K current in nudibranch neurons is not reproduced by cAMP
J Coombs, S Thompson
Journal of Neuroscience 1 February 1987, 7 (2) 443-452; DOI: 10.1523/JNEUROSCI.07-02-00443.1987
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.