Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonatal rat astroglial cells

VK Han, JM Lauder and AJ D'Ercole
Journal of Neuroscience 1 February 1987, 7 (2) 501-511; DOI: https://doi.org/10.1523/JNEUROSCI.07-02-00501.1987
VK Han
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JM Lauder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AJ D'Ercole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of somatomedin/insulin-like growth factors (Sm/IGFs) in neural growth and development is not clearly defined. To characterize Sm/IGF receptors and to correlate binding with the biologic actions of Sm/IGFs in a homogeneous population of neural cells, we isolated and studied a nearly pure population of cultured astroglial monolayers derived from cerebral cortices of neonatal rats. Binding of radiolabeled Sm/IGFs was specific, saturable, and reversible, with 90% of the binding occurring within 6 hr of incubation at 4 degrees C. Competitive binding studies with Sm-C/IGF I yielded curvilinear Scatchard plots, while studies with IGF II and multiplication stimulating activity (MSA) yielded linear plots, suggesting that 125I-Sm-C/IGF I binds to more than 1 receptor species, and 125I-IGF II and 125I-MSA bind to one only. These findings were supported by affinity-labeling studies with radiolabeled Sm/IGFs using disuccinimidyl suberate as a cross-linking agent. Sm-C/IGF I appeared to bind to both type I and II Sm/IGF receptors, because cross- linked 125I-Sm-C/IGF I-receptor complexes with molecular weight (Mr) of greater than 300,000 (300K) and 130K (type I receptor) were observed under nonreducing and reducing conditions, respectively, as were 220 and 260K complexes (type II receptor) under the same respective conditions. 125I-IGF II and 125I-MSA, however, bound only to the Mr 220 and 260K moieties under nonreducing and reducing conditions, respectively, suggesting that these peptides bind only to the type II receptor. Competitive binding studies of the cross-linked moieties were consistent with this interpretation. In contrast, 125I-insulin bound poorly to astroglia (less than 0.5% specific binding), and cross- linking studies could not definitely distinguish among low-affinity binding to the type I Sm/IGF receptor, binding to a paucity of insulin receptors, or both. In addition, by combining autoradiography to localize 125I-Sm/IGFs binding on astroglial cells and immunocytochemistry with anti-glial fibrillary acidic protein to identify the cell type, we have demonstrated cell-surface binding and apparent internalization of radiolabeled Sm/IGFs. Concurrent studies of Sm/IGF stimulation of 3H-thymidine incorporation revealed that these cells were most sensitive to Sm-C/IGF I, followed by IGF II and MSA, and insulin. MSA and IGF II, however, were the most potent followed by Sm-C/IGF I and then insulin. Half-maximal stimulations of 3H-thymidine incorporation corresponded closely with half-maximal binding displacement for Sm-C/IGF I and less so for IGF II and MSA.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 7 (2)
Journal of Neuroscience
Vol. 7, Issue 2
1 Feb 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonatal rat astroglial cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonatal rat astroglial cells
VK Han, JM Lauder, AJ D'Ercole
Journal of Neuroscience 1 February 1987, 7 (2) 501-511; DOI: 10.1523/JNEUROSCI.07-02-00501.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonatal rat astroglial cells
VK Han, JM Lauder, AJ D'Ercole
Journal of Neuroscience 1 February 1987, 7 (2) 501-511; DOI: 10.1523/JNEUROSCI.07-02-00501.1987
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.