Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust

M Burrows
Journal of Neuroscience 1 April 1987, 7 (4) 1064-1080; DOI: https://doi.org/10.1523/JNEUROSCI.07-04-01064.1987
M Burrows
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The connections made by afferents from a proprioceptor at the femorotibial joint in a hind leg of a locust, the femoral chordotonal organ (FCO), were determined by making intracellular recordings from motor neurons and spiking local interneurons in the central nervous system and from afferent cell bodies in the periphery. Staining the central projections of the afferent neurons with dye introduced into their axons at the receptor, and the intracellular injection of dye into motor neurons and interneurons, shows that the branches of all 3 types of neuron overlap in specific regions of neuropile. Afferents excited by a movement of the receptor apodeme that is equivalent to an imposed extension of the femorotibial joint excite flexor tibiae motor neurons and some spiking local interneurons with cell bodies at the ventral midline of the metathoracic ganglion. The opposite movement excites extensor tibiae motor neurons and a different set of spiking local interneurons. Spikes in afferents that excite flexor motor neurons evoke depolarizing potentials that follow each spike with a consistent central latency of approximately 1.5 msec. The amplitude of the depolarizing potentials is dependent upon the membrane potential of the motor neuron. This evidence points to the connection being direct and to the potentials' being EPSPs. Simultaneous recordings from certain spiking local interneurons and certain flexor motor neurons show that they receive many synaptic potentials in common and are driven in a parallel fashion by movements of the receptor apodeme. Spikes of some afferents evoke EPSPs in both neurons with the same consistency and latency. An afferent can therefore synapse directly upon a motor neuron and a spiking local interneuron. Each afferent synapses on several motor neurons and possibly upon several interneurons. In turn, each motor neuron and each interneuron receives inputs from several afferents.

Back to top

In this issue

The Journal of Neuroscience: 7 (4)
Journal of Neuroscience
Vol. 7, Issue 4
1 Apr 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust
M Burrows
Journal of Neuroscience 1 April 1987, 7 (4) 1064-1080; DOI: 10.1523/JNEUROSCI.07-04-01064.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust
M Burrows
Journal of Neuroscience 1 April 1987, 7 (4) 1064-1080; DOI: 10.1523/JNEUROSCI.07-04-01064.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.