Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex

MJ Campbell, DA Lewis, R Benoit and JH Morrison
Journal of Neuroscience 1 April 1987, 7 (4) 1133-1144; https://doi.org/10.1523/JNEUROSCI.07-04-01133.1987
MJ Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DA Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Benoit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Morrison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The distribution of the prosomatostatin-derived peptides (PSDP), somatostatin-28 and somatostatin-28(1–12), in the cynomolgus monkey (Macaca fascicularis) neocortex was characterized in quantitative immunohistochemical studies of 3 visual areas (V1, primary visual cortex; V2, the adjacent visual association area; and AIT, a visual association area in anterior inferior temporal cortex), 2 auditory areas (AI, primary auditory cortex; and T1, an adjacent auditory association area) and anterior cingulate cortex (Area 24). The results of similar quantitative analyses in 3 homologous areas in rat neocortex (primary visual, primary auditory, and anterior cingulate) are also presented. Primate cortical areas differed significantly in both density and laminar distribution of PSDP-immunoreactive profiles. Area 24, the most densely labeled area, had nearly 6 times as many PSDP- immunoreactive neurons as V1. Both auditory areas contained approximately two-thirds the number of PSDP-immunoreactive neurons found in Area 24; however, both had nearly 4 times as many immunoreactive neurons as V1. The 3 visual areas showed incremental increases in the number of PSDP-immunoreactive neurons; V2 contained nearly twice and AIT nearly 3 times the number of immunoreactive neurons present in V1. Both the supra- and infragranular layers were densely labeled in Area 24 and Area T1, however, in AI, V1, V2, and AIT the infragranular layers were relatively sparsely labeled. In contrast to the regional heterogeneity found in the primate neocortex, the distribution of immunoreactive neurons was quite uniform across the 3 rat cortical areas. The rat cortical areas contained substantially fewer immunoreactive neurons than most of the monkey cortical areas, and a majority of these immunoreactive neurons were located in the infragranular layers. These findings suggest that the regional specialization of primate neocortex involves the selective distribution of PSDP-immunoreactive neurons. They also suggest that chemically specified intrinsic organization of neocortex is not likely to be uniform across species or across cortical areas in the primate. The distinctive regional distribution patterns of PSDP-immunoreactive profiles appear to parallel that of the long corticocortical projections (contralateral and distant ipsilateral projections), suggesting an association between these presumed inhibitory interneurons and this important extrinsic system.

Back to top

In this issue

The Journal of Neuroscience: 7 (4)
Journal of Neuroscience
Vol. 7, Issue 4
1 Apr 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex
MJ Campbell, DA Lewis, R Benoit, JH Morrison
Journal of Neuroscience 1 April 1987, 7 (4) 1133-1144; DOI: 10.1523/JNEUROSCI.07-04-01133.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex
MJ Campbell, DA Lewis, R Benoit, JH Morrison
Journal of Neuroscience 1 April 1987, 7 (4) 1133-1144; DOI: 10.1523/JNEUROSCI.07-04-01133.1987
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.