Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Local circuitry of identified projection neurons in cat visual cortex brain slices

LC Katz
Journal of Neuroscience 1 April 1987, 7 (4) 1223-1249; DOI: https://doi.org/10.1523/JNEUROSCI.07-04-01223.1987
LC Katz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The relationship between pyramidal cell morphology and efferent target was investigated in layer 6 of cat primary visual cortex (area 17). Layer 6 has 2 projections, one to the lateral geniculate nucleus (LGN) and another to the visual claustrum. The cells of origin of each projection were identified by retrograde transport of fluorescent latex microspheres. The labeled cells were visualized in brain slices prepared from area 17, using an epifluorescence compound microscope modified for intracellular recording. Individual retrogradely labeled cells were penetrated and intracellularly stained with Lucifer yellow to visualize the patterns of axons and dendrites associated with each projection. The neurons that give rise to the 2 projections had very different patterns of dendrites and local axonal collaterals, but the patterns within each group were highly stereotyped. The differences between their axonal collaterals were particularly dramatic. Claustrum projecting cells had fine, horizontally directed collaterals that arborized exclusively in layer 6 and lower layer 5. Most LGN projecting cells had virtually no horizontal arborization in layer 6. Instead, they sent widespread collaterals vertically, which arborized extensively in layer 4. The apical dendrites of the 2 groups also differed markedly. Claustrum projecting cells had apical dendrites reaching to layer 1, with branches in layer 5 only, while LGN projecting cells never had an apical dendrite reaching higher than layer 3, with side branches in layers 5 and 4. Therefore, each efferent target must receive inputs from neurons whose synaptic connections within area 17 are significantly different from those of neurons projecting to other targets. This further suggests that distinct visual response properties should be associated with each projection. In addition to the claustrum and LGN projecting cells, about 20% of layer 6 pyramidal neurons lacked an efferent axon. Morphologically, most resembled LGN projecting neurons, but a few had characteristics of claustrum projecting cells. These neurons may represent cells that either failed to make an efferent connection or cells that lost an efferent axon during development. Their frequency suggests that such intrinsic, presumably excitatory, neurons may play a significant role in cortical processing.

Back to top

In this issue

The Journal of Neuroscience: 7 (4)
Journal of Neuroscience
Vol. 7, Issue 4
1 Apr 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Local circuitry of identified projection neurons in cat visual cortex brain slices
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Local circuitry of identified projection neurons in cat visual cortex brain slices
LC Katz
Journal of Neuroscience 1 April 1987, 7 (4) 1223-1249; DOI: 10.1523/JNEUROSCI.07-04-01223.1987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Local circuitry of identified projection neurons in cat visual cortex brain slices
LC Katz
Journal of Neuroscience 1 April 1987, 7 (4) 1223-1249; DOI: 10.1523/JNEUROSCI.07-04-01223.1987
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.