Abstract
Among other deficits, amygdalectomy impairs the ability of the animal to recognize the affective significance of a stimulus. In the present study, neuronal activity in the amygdala (AM) was recorded from alert monkeys while they performed tasks leading to the presentation of rewarding or aversive stimuli. Of 585 AM neurons tested, 312 (53.3%) responded to at least one stimulus in one or more of 5 major groups: 40 vision related, 26 audition related, 41 ingestion related, 117 multimodal, and 14 selective. Ingestion-related neurons were subdivided according to their responses to other stimuli: oral sensory, oral sensory plus vision, and oral sensory plus audition. Depending upon their responsiveness to the affective significance of the stimuli, neurons in the vision- and audition-related categories were divided into 2 subclasses: vis-I (26/40), vis-II (14/40), aud-I (8/26), and aud- II (18/26). All 4 subtypes usually responded to unfamiliar stimuli but seldom responded to neutral familiar stimuli. Types vis-I and aud-I responded to both positive and negative familiar stimuli. Types vis-II and aud-II responded to certain familiar negative stimuli but not to familiar positive stimuli. In vis-I neurons, responses were stronger for palatable foods than for less palatable foods. No neurons within vision-related, audition-related, and multimodal categories responded solely to positive or to negative stimuli. Of the 27 oral sensory neurons 9 were tested with saline or salted food, and 8 responded to normally aversive oral sensory stimuli in the same manner as they did to normal food or liquid (water or juice). In contrast to oral sensory neurons, all responses of 4 oral sensory-plus-vision and all of 4 selective neurons tested, as well as bar pressing behavior, were modulated by altering the affective significance of the food. These results suggest that the AM is one of the candidates for stimulus- affective association based on associative learning and memory.