Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina

P Lukasiewicz and F Werblin
Journal of Neuroscience 1 December 1988, 8 (12) 4470-4481; https://doi.org/10.1523/JNEUROSCI.08-12-04470.1988
P Lukasiewicz
Neurobiology Group, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Werblin
Neurobiology Group, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage-gated ganglion cell membrane currents were studied under whole- cell patch clamp in isolation and in retinal slices. The cells were identified by (1) backfilling their axons with rhodamine and later identifying them by their fluorescence in the slice or the mix of isolated cells or (2) by filling them with Lucifer yellow during recording in retinal slices. Both methods yielded cells with similar currents. In some cases, isolated cells lacked processes yet showed currents similar to other cells, suggesting that voltage-gated currents in all cells were located primarily at the soma. Both a conventional inactivating sodium current and a sustained calcium current were found. We describe 3 inactivating outward currents, ordered in their rate of inactivation. The fastest current resembled IA reported by Connor and Stevens (1971a, b). A slower current labeled IB inactivated with a time constant of 339 msec at 0 mV. The current with slowest inactivation is labeled IC here, inactivating with a time constant of 4.03 sec at 0 mV. An additional outward current was sustained and calcium dependent labeled IK(Ca). IB was the largest of these currents. It was slower than IA, was not blocked by 4AP, and inactivated over a much more positive potential range. IB appears to play an important role in spike generation, different from that of IA: Its inactivation leads to a slow depolarizing shift of the membrane during a current step, truncating spike activity after about 300–700 msec as the membrane potential enters the region of sodium inactivation. We analyze how the inactivating outward current acts to ensure a graded spiking response and to truncate the spiking output in the presence of large excitatory inputs.

Back to top

In this issue

The Journal of Neuroscience: 8 (12)
Journal of Neuroscience
Vol. 8, Issue 12
1 Dec 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina
P Lukasiewicz, F Werblin
Journal of Neuroscience 1 December 1988, 8 (12) 4470-4481; DOI: 10.1523/JNEUROSCI.08-12-04470.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina
P Lukasiewicz, F Werblin
Journal of Neuroscience 1 December 1988, 8 (12) 4470-4481; DOI: 10.1523/JNEUROSCI.08-12-04470.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.