Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle

WN Zagotta, MS Brainard and RW Aldrich
Journal of Neuroscience 1 December 1988, 8 (12) 4765-4779; https://doi.org/10.1523/JNEUROSCI.08-12-04765.1988
WN Zagotta
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MS Brainard
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RW Aldrich
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A number of mutations have been shown to affect potassium channels in Drosophila muscle. Single-channel analysis of the effects of mutations will prove a powerful approach for studying the molecular mechanisms of ion channel gating. As an initial step towards studying the effects of mutations at the single-channel level, we have characterized wild-type potassium channels in cultured embryonic myotubes using whole-cell, cell-attached, inside-out, and outside-out configurations of the patch- clamp technique. The myotubes differentiate in vitro from primary cultures of late-gastrula stage embryos of Drosophila. The whole-cell outward currents develop in a characteristic sequence. At 8 hr after plating a small delayed outward current is present. Between 10 and 12 hr after plating an A-type outward current develops, followed, between 13 and 16 hr, by a large increase in the delayed current. The A-type current is absent at all developmental stages in myotubes homozygous for the mutant ShKS133. At least 4 different types of potassium channels contribute to the whole-cell outward currents: a fast transient 14 pS A-type potassium channel (A1), a slowly inactivating 14 pS potassium channel (KD), a 40 pS potassium channel that does not inactivate during voltage pulses up to 2.4 sec in duration (KO), and a 90 pS potassium channel that is strongly activated by membrane stretch (KST). Channels indistinguishable from the KD and KST channels were also observed in patch-clamp studies on larval body wall muscle fibers. A1 channels were also present in intact dorsal longitudinal flight muscles. The A1 channel underlies the rapidly inactivating component of the whole-cell current. It inactivates with a similar time course and voltage dependence to the A-current and is similarly blocked by 5 mM 4- aminopyridine. The KD channel underlies a large fraction of the delayed component of the whole-cell current. Ensemble averages of single KD channels inactivate with the same time course as the delayed current. The KO channel represents a smaller fraction of the whole-cell delayed outward current. Its increase in open probability with voltage is due primarily to a voltage dependence of its closed times. The KST channel is voltage and calcium independent and would therefore only contribute to the leak whole-cell current.

Back to top

In this issue

The Journal of Neuroscience: 8 (12)
Journal of Neuroscience
Vol. 8, Issue 12
1 Dec 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle
WN Zagotta, MS Brainard, RW Aldrich
Journal of Neuroscience 1 December 1988, 8 (12) 4765-4779; DOI: 10.1523/JNEUROSCI.08-12-04765.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle
WN Zagotta, MS Brainard, RW Aldrich
Journal of Neuroscience 1 December 1988, 8 (12) 4765-4779; DOI: 10.1523/JNEUROSCI.08-12-04765.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.