Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Glycine and glycine receptor immunoreactivity in brain and spinal cord

AN van den Pol and T Gorcs
Journal of Neuroscience 1 February 1988, 8 (2) 472-492; DOI: https://doi.org/10.1523/JNEUROSCI.08-02-00472.1988
AN van den Pol
Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Gorcs
Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To study the distribution of glycine immunoreactive neurons in the spinal cord and brain, antisera were raised against glycine conjugated to protein carriers. High-titer rabbit glycine antiserum was purified by affinity chromatography. Testing against other amino acids and peptides with immuno dot blots and ELISA assays showed little apparent cross-reaction with glutamate, aspartate, glutamine, taurine, and 17 other amino acids and related compounds. Similarly, the antiserum showed little apparent recognition of glycine when glycine was incorporated into peptides. A slight cross-reactivity with GABA, beta- alanine, and cysteine was found. Immunocytochemical labeling of tissue sections could be blocked with glycine conjugated to a heterologous carrier protein but not by other amino acids conjugated to that protein. Immunocytochemistry at the light microscope level with immunofluorescence and silver-intensified colloidal gold revealed a wide distribution of glycine-like immunoreactivity throughout all laminae of the rat spinal cord and in all segments studied from the cervical, thoracic, lumbar, and sacral cord. Immunoreactive boutons were found terminating on both cell bodies and on dendrites. Ultrastructural analysis with postembedding colloidal gold immunocytochemistry demonstrated large numbers of immunoreactive boutons making symmetrical type synapses with neuronal perikarya, including motor neurons, and with proximal and distal dendrites. Presynaptic glycine immunoreactive boutons were found in both ventral and dorsal horn. Immunoreactivity was concentrated over regions rich in vesicles, and over mitochondria in immunoreactive boutons, but not over mitochondria in postsynaptic dendrites. Glycine-immunoreactive perikarya were identified both in the dorsal horn and in the ventral horn. Myelinated and unmyelinated glycine-immunoreactive axons were noted both in the gray and white matter of the cord. The density of immunoreactive axons varied in the white matter, with the greatest number of immunoreactive axons found in the white matter adjacent to the gray matter in lateral and ventral white. Significantly fewer immunoreactive axons were found in the white matter of the dorsal columns. Myelin sheaths around axons were unlabeled. The distribution of glycine-immunoreactive boutons correlated well with the distribution of glycine receptor immunoreactivity on postsynaptic elements of the spinal cord, tested with different monoclonal antisera against strychnine-purified glycine receptor. Glycine receptor immunoreactivity was found throughout the gray matter of both rat and primate.

Back to top

In this issue

The Journal of Neuroscience: 8 (2)
Journal of Neuroscience
Vol. 8, Issue 2
1 Feb 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glycine and glycine receptor immunoreactivity in brain and spinal cord
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Glycine and glycine receptor immunoreactivity in brain and spinal cord
AN van den Pol, T Gorcs
Journal of Neuroscience 1 February 1988, 8 (2) 472-492; DOI: 10.1523/JNEUROSCI.08-02-00472.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Glycine and glycine receptor immunoreactivity in brain and spinal cord
AN van den Pol, T Gorcs
Journal of Neuroscience 1 February 1988, 8 (2) 472-492; DOI: 10.1523/JNEUROSCI.08-02-00472.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.