Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Spatial distribution of Ca currents in molluscan neuron cell bodies and regional differences in the strength of inactivation

S Thompson and J Coombs
Journal of Neuroscience 1 June 1988, 8 (6) 1929-1939; https://doi.org/10.1523/JNEUROSCI.08-06-01929.1988
S Thompson
Hopkins Marine Station, Stanford University, Pacific Grove, California 93950.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Coombs
Hopkins Marine Station, Stanford University, Pacific Grove, California 93950.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The spatial distribution of Ca current in molluscan neuron cell bodies was studied using a large patch method in combination with 2- microelectrode voltage clamp. The method has a spatial resolution equal to about 0.1% of the cell body area. Ca current is not uniformly distributed. The current density varies between patches, changing by as much as a factor of 2.5 over a distance of 20 micron, and there is evidence that Ca current occurs in “hot spots” involving a few hundred channels. The current density increases in a moderately steep gradient from the soma cap, opposite the axon, toward the axon hillock. Ca currents in patches from different regions of the soma are qualitatively different. Currents near the soma cap do not inactivate or inactivate weakly during depolarization, while currents of equal density nearer the axon hillock exhibit pronounced inactivation. The strength of inactivation increases in parallel with the gradient in current density, but local differences in current density, or in the number of active Ca channels, do not explain the variability in inactivation. Inactivating and noninactivating Ca currents could not be distinguished on the basis of activation or deactivation kinetics, voltage dependence of activation, or sensitivity to hyperpolarizing conditioning pulses. Also, the amplitude of noninactivating current near the soma cap is reduced by intracellular Ca injection showing that, like the whole-cell current, Ca current in this region is subject to Ca-dependent inactivation. The data favor the hypothesis that these cells express only one type of Ca channel. Differences in the strength of inactivation may result from local differences in cytoplasmic Ca buffering, local modification of Ca channels in a way that changes their sensitivity to Ca-dependent inactivation, or local differences in the availability of cytoplasmic factors or enzymes that are necessary for inactivation.

Back to top

In this issue

The Journal of Neuroscience: 8 (6)
Journal of Neuroscience
Vol. 8, Issue 6
1 Jun 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spatial distribution of Ca currents in molluscan neuron cell bodies and regional differences in the strength of inactivation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Spatial distribution of Ca currents in molluscan neuron cell bodies and regional differences in the strength of inactivation
S Thompson, J Coombs
Journal of Neuroscience 1 June 1988, 8 (6) 1929-1939; DOI: 10.1523/JNEUROSCI.08-06-01929.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Spatial distribution of Ca currents in molluscan neuron cell bodies and regional differences in the strength of inactivation
S Thompson, J Coombs
Journal of Neuroscience 1 June 1988, 8 (6) 1929-1939; DOI: 10.1523/JNEUROSCI.08-06-01929.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.