Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations

JE Franck, DD Kunkel, DG Baskin and PA Schwartzkroin
Journal of Neuroscience 1 June 1988, 8 (6) 1991-2002; https://doi.org/10.1523/JNEUROSCI.08-06-01991.1988
JE Franck
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DD Kunkel
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DG Baskin
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PA Schwartzkroin
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Following kainate lesions of hippocampal subfield CA3, the remaining CA 1 pyramidal cells become hyperexcitable. This lesion is of interest because, morphologically, it resembles the damage often seen in cases of temporal lobe epilepsy; it may provide insight into the consequences of such cell loss in humans. The hyperexcitability in CA 1 is associated with a loss of both early and late IPSPs. At long postlesion latencies (2–4 months) inhibition shows partial recovery and the hyperexcitability subsides. The intent of the present work was to determine if alterations in CA 1 excitability and functional inhibition postlesion are correlated with changes in morphologic and physiologic indicators of inhibitory interneuron function or with alterations in binding sites for inhibitory transmitters. Using GAD immunocytochemistry, we found no acute or chronic lesion-induced decrease in numbers of CA 1 interneurons or in qualitative characteristics of the pericellular distribution of their terminals in CA 1 stratum pyramidale. Intracellular recordings from identified cells in CA 1 indicated that putative interneurons were viable in hyperexcitable tissue. It was further observed that “recovery” in tissue studied 2–4 months postlesion primarily involved the early IPSP; the late IPSP failed to reappear. Quantitative in vitro autoradiographic analysis of 3H-flunitrazepam--a marker for the early IPSP associated GABAA receptor complex--indicated that hyperexcitability was associated with an increase in GABAA receptor number in CA 1; receptor binding returned to normal at long postlesion latencies as the early IPSP returned and hyperexcitability subsided. Finally, hyperexcitable pyramidal cells were found to retain their responsivity to exogenously applied GABA. These data indicate that much of the cellular machinery necessary for inhibition is retained in CA 1, despite lesion-induced hyperexcitability. We suggest that the acute loss of the IPSP after kainate lesion is due to a transient disconnection between inhibitory and excitatory elements in CA 1 and/or to a loss of normal afferent drive from CA3 onto some CA 1 interneurons. We further suggest that incomplete recovery can be explained by abnormalities that occur as neuroplastic rearrangements in response to deafferentation of CA 1. The relevance of these studies to human hippocampal necrosis and to other models of focal epilepsy is discussed.

Back to top

In this issue

The Journal of Neuroscience: 8 (6)
Journal of Neuroscience
Vol. 8, Issue 6
1 Jun 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations
JE Franck, DD Kunkel, DG Baskin, PA Schwartzkroin
Journal of Neuroscience 1 June 1988, 8 (6) 1991-2002; DOI: 10.1523/JNEUROSCI.08-06-01991.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations
JE Franck, DD Kunkel, DG Baskin, PA Schwartzkroin
Journal of Neuroscience 1 June 1988, 8 (6) 1991-2002; DOI: 10.1523/JNEUROSCI.08-06-01991.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.