Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats

JD Schall, SJ Ault, DJ Vitek and AG Leventhal
Journal of Neuroscience 1 June 1988, 8 (6) 2039-2048; https://doi.org/10.1523/JNEUROSCI.08-06-02039.1988
JD Schall
Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SJ Ault
Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Vitek
Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AG Leventhal
Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the normally pigmented neonatal cat, many ganglion cells in temporal retina project to the contralateral dorsal lateral geniculate nucleus (LGNd) and medial interlaminar nucleus (MIN). Most of these cells are eliminated during postnatal development. If one optic tract is sectioned at birth, much of this exuberant projection from the contralateral temporal retina is stabilized (Leventhal et al., 1988b). To determine how the abnormal projection from the contralateral temporal retina is accommodated in the central visual pathways, neuronal activity was recorded in the visual thalamus and cortex of adult cats whose optic tracts were sectioned as neonates. The recordings showed that up to 20 degrees of the ipsilateral hemifield is represented in the LGNd and MIN. Recordings from areas 17 and 18 of the intact visual cortex showed that up to 20 degrees of the ipsilateral visual field is also represented and that the ipsilateral representation is organized as in a Boston Siamese cat (Hubel and Wiesel, 1971; Shatz, 1977; Cooper and Blasdel, 1980) or a heterozygous albino cat (Leventhal et al., 1985b). The extent of the ipsilateral visual field representation was greater in area 18 than in area 17; the extent of the ipsilateral hemifield representation in areas 17 and 18 varied with elevation, increasing with distance from the horizontal meridian. The receptive fields of cells in the LGNd and visual cortex subserving contralateral temporal retina were abnormally large. Otherwise, their receptive field properties seemed normal. In the same animals studied physiologically, HRP was injected into the ipsilateral hemifield representation in the LGNd and MIN of the intact hemisphere. The topographic distribution of the alpha and beta cells, respectively, labeled by these injections correlated with the elevation-related changes in the ipsilateral visual field representation in areas 18 and 17. Our results indicate that the retinotopic organization of the mature geniculocortical pathway reflects the abnormal pattern of central projections of ganglion cells in neonatally optic tract sectioned cats. Thus, if they do not die, retinal ganglion cells normally eliminated during development are capable of making seemingly normal, functional connections. The finding that an albino-like representation of the ipsilateral hemifield can be induced in the visual cortex of normally pigmented cats suggests that the well- documented defects in the geniculocortical pathways of albinos are secondary to the initial misrouting of ganglion cells at the optic chiasm (Kliot and Shatz, 1985) and not a result of albinism per se.

Back to top

In this issue

The Journal of Neuroscience: 8 (6)
Journal of Neuroscience
Vol. 8, Issue 6
1 Jun 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats
JD Schall, SJ Ault, DJ Vitek, AG Leventhal
Journal of Neuroscience 1 June 1988, 8 (6) 2039-2048; DOI: 10.1523/JNEUROSCI.08-06-02039.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats
JD Schall, SJ Ault, DJ Vitek, AG Leventhal
Journal of Neuroscience 1 June 1988, 8 (6) 2039-2048; DOI: 10.1523/JNEUROSCI.08-06-02039.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.